بررسی مقاومت به پوسیدگی فوزاریومی ریشه گلرنگ با استفاده از آزمون بیماریزایی و نشانگر مولکولی AFLP

پریسا رحیمی و بهرام شریف نبی آ*

(تاریخ دریافت: ۱۳۹۵/۱۱/۳؛ تاریخ پذیرش: ۱۳۹٦/٥/۲۰)

چکیدہ

گلرنگ (.Carthamus tinctorius L.) گیاهی یکساله و دانه روغنی است که در شرایط آب و هوایی گرم وخشک کشور به خوبی سازگار می باشد و تولید آن بخاطر روغن اخیرا گسترش یافته است. پوسیدگی فوزاریومی ریشه یکی از بیماریهای مهم گلرنگ در ایران میباشد. استفاده از ارقام مقاوم یکی از راهکارهای اصلی برای کاهش خسارت وارده به شمار میرود. در تحقیق حاضر تنوع ژنتیکی ارقام گلرنگ و مقاومت نسبی به پوسیدگی فوزاریومی ریشه با استفاده از نشانگرهای AFLP بررسی گردید. شصت ژنوتیپ انتخابی در سه تکرار با استفاده از طرح بلوک کاملا تصادفی تحت شرایط آزمایشگاهی و گلخانهای مورد بررسی قرار گرفتند. چهل و نه ژنوتیپ انتخابی در سه تکرار با استفاده سایر کشورها با استفاده از جدایه بیماریزای Fusarium solani (جدا شده از گلرنگ) تلقیح شده و بر اساس نوع واکنش به بیماری در پنج گروه مقاوم، نیمه مقاوم، حساس، نیمه حساس و متحمل گروه بندی شدند. با توجه به نتایج بررسی تنوع ژنتیکی حاصل از نشانگرهای AFLP، ژنوتیپها بر اساس مقاومت به بیماری متمایز و گروه بندی شدند. بوت استرپ برای مقایسه اختلاف میانگین درون و بین ژنوتیپها و میزان مقاومت به بیماری پوسیدگی فوزاریومی استاه و متحمل گروه بندی شدند. با توجه به نتایج بررسی تنوع ژنتیکی حاصل از نشانگرهای گروه مقاوم، نیمه مقاوم، حساس، نیمه حساس و متحمل گروه بندی شدند. بوت استرپ برای مقایسه اختلاف میانگین درون و بین ژنوتیپها و میزان مقاومت به بیماری پوسیدگی فوزاریومی استفاده گردید. خوشه بندی حاصل از نتایج AFLP و خصوصیت مقاومت ژنوتیپها تلابق کامل نداشتند اما ژنوتیپهای مقاوم و حساس به طور کامل از یکدیگر جدا شده و با اختلاف معنی دار از سایر ژنوتیپها می در د.

كليدواژه: گلرنگ، پوسيدگی ريشه، مقاومت، AFLP، بيماريزايي

* مسئول مکاتبات، پست الکترونیکی: sharifna@cc.iut.ac.ir ۱– دانش آموخته کارشناسی ارشد بیماری شناسی گیاهی، گروه گیاهپزشکی دانشکده کشاورزی دانشگاه صنعتی اصفهان. ۲– استاد بیماری شناسی گیاهی، گروه گیاهپزشکی دانشکده کشاورزی دانشگاه صنعتی اصفهان.

Searching for resistance to Fusarium root rot in safflower genotypes using pathogenicity test and AFLP molecular markers

P. Rahimi¹ and B. Sharifnabi^{1*}

(Received: 24.1.2017; Accepted: 18.8.2017)

Abstract

Safflower (Carthamus tinctorius L.) is an annual oilseed crop adapted chiefly to the warm climate areas of Iran, which recently commercial production became concentrated to produce oil. Fusarium root rot is one of the important diseases of safflower in Iran. Whereas the use of resistant cultivars is one of the main strategies for reducing the loss and damage caused by pathogens in plants, this research was conducted to study the genetic diversity of safflower genotypes using AFLP markers and to compare relative resistance to Fusarium root rot. Sixty selected cultivars and lines derived from various regions were evaluated in randomized complete block design in three replications under in vitro and green house condition. Forty nine genotypes of safflower from Iran and 11 from other countries were inoculated with a selected identified pathogenic isolate of Fusarium solani derived from safflower. Genotypes were classified into five groups based upon the type of reaction to the disease; i.e. resistant, semi-resistant, tolerant, susceptible and semi-susceptible. Genetic diversity of the genotypes was assessed using AFLP markers. The results indicated differences among genotypes for resistance to *Fusarium* and clustering based on this trait. A bootstrap procedure was used to compare mean distances within and between genotypes and resistance to Fusarium root rot. Clustering based on AFLP markers and phenotypic resistance traits did not indicate complete concordance, but resistance and susceptible genotypes were separated from one another and have significant differences with other genotypes.

Keywords: Safflower, Root rot, Resistance, AFLP, Pathogenicity

^{*} Corresponding Author, Email: sharifna@cc.iut.ac.ir

^{1.} Department of Plant Protection, College of Agriculture, Isfahan University of Technology, Isfahan, 8415683111, Iran.

Introduction

Safflower (*Carthamus tinctorius* L.) is an annual oilseed crop and a member of the family *Asteraceae.* (Dajue & Mündel 1996). It is a multipurpose oilseed crop which has a high adaptation to different conditions (such as drought tolerance) and is suitable for production in arid and semi-arid regions (Ashri & Knowles 1960). Due to these characteristics, Safflower production has recently expanded into Iran. The root rot disease is an important soil-borne safflower disease in Isfahan, which can be caused by different pathogens. *Fusarium* species are the main causal agents of the disease, which reduces the yield of safflower.

Fusarium genus (*Hypocreales*, *Necteriaceae*) contain well-known and important plant and human pathogenic species (Lombard et al. 2014). Fusarium solani (Mart.) Sacc. is a name that has been applied broadly for F. solani species complex (FSSC) (O'Donnell 2000). Snyder & Hansen (1941) considered F. solani to be a single species, a combination of the seven species, 12 varieties and six forms described in sections Martiella and Ventricosum by Wollenweber & Reinking (1935). A remarkable degree of phylogenetic diversity within this complex have been proved by phylogenetic study based on DNA sequences of three genes (O'Donnell et al. 2008). While this morphological concept comprises a great deal of variation and the FSSC contains some species with variant morphology, distinguishing members of the morpho-species F. solani from other fusaria generally is considered straightforward.

F. solani (Mart.) Sacc. species are grouped in three clades. Clade one contain two members from New Zealand. *F. viguliforme*, *F. tucumaniae* belonged to Clade two (Aoki *et al.* 2003) and biogeographically connected to South America (O'Donnell 2000). Zhang *et al.* (2006) conducted a study and stated that most of the *Fusarium* species associated with soil and plants and all known human pathogenic isolates are in Clade three and further work has shown that Clade three alone consists of at least 35 phylogenetic species (O'Donnell *et al.* 2008). Clade three showed some degree of biogeographic substructure, containing clades with possible connections to South America, Asia and Africa.

Recently, the family *Nectriaceae* are evaluated based on DNA sequences of 10 loci and segregated

into several new clade and genera (Lombard *et al.* 2014). By this investigation, *Fusarium solani* changed to *Neocosmospora solani*. For example *F. solani*. phaseoli changed to *Neocosmospora phaseoli* (Lambord *et al.* 2014).

A basic disease resistance breeding program is the selection of suitable source of resistance which could be found in cultivated or wild genotypes (Polak & Bartos 2002). Resistance is most often controlled by major dominant genes which may be found in high number and operate in a gene-for gene manner. Resistance can be considered as a qualitative or quantitative trait. Quantitative resistance (QR) which also term partial, residual and field resistance or even (wrongly) with tolerance, varies continuously from imperceptible to quite strong (depend on phenotypes of host population). Qualitative resistance is defined as discontinuous range of variation in resistance from susceptible and resistant (depend on host genotypes). This kind of resistance is governed by one or several genes with large effects (Vale et al. 2001).

Currently, there are multiple molecular marker systems routinely used to evaluate genetic diversity in plants. These include RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphisms) and ISSR (Intersimple sequence repeats). AFLP markers are frequently used in genetic diversity studies of crops, because they do not require prior genomic information, and are simpler and less labor-sensitive than the other DNA marker techniques. Different molecular markers have been used for assessing and developing special groups in safflower. Yazdi Samadi et al. (2001) used RAPD markers to detect variation in 28 Safflower accessions including Iranian genotypes. RAPD, SSR and AFLP were used by Sehgal and Raina (2005) for characterization of 14 Indian Safflower cultivars. AFLP was the most efficient marker system in their study. Mahasi et al. (2009) evaluated the degree of polymorphism in 36 Safflower accessions using RAPDs. Khan et al. 2009 utilized RAPDs in comparing geographical groups, agro-morphological and fatty acid patterns in 193 Safflower accessions derived from forty countries.

According to the literature, AFLP was used for evaluation of diversity between safflower genotypes. AFLP was the best-suited molecular assay for fingerprinting and assessing genetic relationships among tropical maize inbred lines with high accuracy in comparison to the other methods such as RAPD, SSR and RFLP (Garcia *et al.* 2004). The high level of polymorphism within potato varieties and the high number of variety-specific bands suggest that AFLPs are powerful markers for diversity analysis in potato varieties (Tarkesh Esfahani *et al.* 2009).

The objectives of this study were to (i) find the causal agent of safflower root rot in Isfahan (ii) evaluation of resistance level of different safflower genotypes to this root rot agent and (iii) survey of the diversity in safflower genotypes base on the resistance to root rot. The study attempt to determine relationships among these factors so as to identify patterns of resistance and diversity in safflower Fusarium root rot.

Materials and methods

Sampling of fungi

Plant materials showing symptoms of Fusarium root rot were collected from safflower farms in different parts of Isfahan province, Iran. For fungal isolation, small parts of the crown and root were surface-sterilized separately using 0.05% NaOCl and cultured on PDA and CMA plates, containing 10 ppm Delvacide, 25 ppm Ampicillin, 10 ppm Rifampicin, 100 ppm PCNB and 20 ppm Benomyl. These were incubated at 25°C for 3 days. All samples were sub-cultured on PDA to obtain pure cultures by hyphal tip. Species were identified based on microscopic characteristics. For identification of Fusarium species, isolates were grown on Carnation leaf-piece agar (CLA) at room temperature for seven to 20 days. Then small scrapes of sporodochia were suspended in 1.5 mL tubes containing 100 μ L of sterile water and spore suspensions were spread on petri dishes containing 2 % water agar (WA) and kept overnight at 25 °C. Germinated spores were transferred to petri dishes containing potato dextrose agar (PDA). For each isolate three replicates were done. The identification was done according to Fusaium species manual of Nelson et al. (1983).

Pathogenicity test of Fusarium isolates

Under in vitro condition

Seeds of safflower were surface-sterilized for five minutes in 0.05% NaOCl, rinsed in sterile distilled water twice, and allowed to germinate at 20°C for three days. Subsequently, 12 germinated seeds were planted around the isolate colony in the pertri plates and those were incubated at 20°C for five days. *Aspergillus* and *Penicillium* isolates were used as controls. Each plate was replicated four times. Pathogenic isolates invaded roots and crowns of seedlings and caused browning. A pathogenicity test was performed according to Yang's (1994) method.

Under greenhouse condition

The pathogenicity test was conducted in sterilized pots using Singelton *et al.* (1990) procedure. The pots were filled with steam-sterilized sandy soil and ten seeds of each variety (per pot) were sown. For each isolate, four pots were considered as replications. Wheat seeds were surface sterilized and inoculated by *Fusarium* and used as inoculum. Three wheat seeds were transferred to each pot and three pots considered as control. The seedlings reaction was evaluated after one week.

Preliminary evaluation of genotypes

Sixty genotypes of safflower, including breeding lines selected from various local Iranian populations and also foreign cultivars (Table 1), were evaluated for reaction to the disease in a randomized complete block design with three replications in the greenhouse. Artificial inoculation via injection of spore suspension of *F. solani* (10^6 spores/ml) was conducted on 8-week old plants and then developments of necrosis and death percentage were recorded. Data were analyzed by general linear model statistical procedures with the SAS Windows system (SAS Institute, INC., Cary, NC. 2008). Comparisons among treatment means were made with LSD analysis.

Seedling root rot severity

Seedling root rot severity was assessed on a 1-7 scale, where the scoring 1 was considered highly resistant, 2 as resistant, 3 as moderately resistant, 4 as tolerant, 5 as moderately susceptible, 6 as susceptible and 7 as highly susceptible. According to the scale: 0-1 = healthy seedling, primary root-free of necrosis or only slight discoloration; 2-4= infected seedling, primary root tip necrotic but firm; 5 = infected seedling, primary root soft and rotted; 6-8 = dead seedling, germinated seed with rotted

No.GenotypeOriginGroupNo.GenotypeOriginGroup1IUTC121Iran-IsfahanfSusceptible31IUTS122Iran-KhorasanTolerant2KOSEIran-IsfahanSusceptible32IUTS144Iran-KhorasanTolerant3IUTC131Iran-KhorasanSemi-Susceptible33IUTS4110Iran-KhorasanTolerant4IUTS121Iran-KhorasanSemi-Susceptible34SAFFIREforeignTolerant5IUTS4110Iran-KhorasanSemi-Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant37GE 62923bSemi-Resistant7GE62913bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant8GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant43IUTC117Iran-IsfahanSemi-Resistant13IUTC2410Iran-IsfahanTolerant43IUTC111Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC111Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE111
2KOSEIran-IsfahanSusceptible32IUTS144Iran-KhorasanTolerant3IUTC131Iran-IsfahanSemi-Susceptible33IUTS44110Iran-KhorasanTolerant4IUTS121Iran-KhorasanSemi-Susceptible34SAFFIREforeignTolerant5IUTS4110Iran-KhorasanSemi-Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant36GE 62915bSemi-Resistant7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62916bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant40AC-SUNSETforeignSemi-Resistant10GE 62918bTolerant41IUTC111Iran-IsfahanSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC2410Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant47IUTE2426 </td
2KOSEIran-IsfahanSusceptible32IUTS144Iran-KhorasanTolerant3IUTC131Iran-IsfahanSemi-Susceptible33IUTS44110Iran-KhorasanTolerant4IUTS121Iran-KhorasanSemi-Susceptible34SAFFIREforeignTolerant5IUTS4110Iran-KhorasanSemi-Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant36GE 62915bSemi-Resistant7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62916bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant40AC-SUNSETforeignSemi-Resistant10GE 62918bTolerant41IUTC111Iran-IsfahanSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC2410Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant47IUTE2426 </td
4IUTS121Iran-KhorasanSemi-Susceptible34SAFFIREforeignTolerant5IUTS4110Iran-KhorasanSemi-Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant36GE 62915bSemi-Resistant7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62917bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1131Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant16IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant17IUTE24110Iran-IsfahanTolerant48IU
5IUTS4110Iran-KhorasanSemi- Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant36GE 62915bSemi-Resistant7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62917bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant17IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant18IUTE2121Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant19IUTE2410Iran-IsfahanTolerant50<
5IUTS4110Iran-KhorasanSemi- Susceptible35GE 62914bSemi-Resistant6GE34078bTolerant36GE 62915bSemi-Resistant7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62917bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE141Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant17IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant18IUTE2121Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant19IUTE2410Iran-IsfahanTolerant50<
7GE62913bTolerant37GE 62923bSemi-Resistant8GE 62917bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE24110Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant18IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE24117Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-Isfahan
8GE 62917bTolerant38IUTA1Iran-AzarbayjanSemi-Resistant9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE2121Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431
9GE 62916bTolerant39IUTA2Iran-AzarbayjanSemi-Resistant10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE2121Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant21IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
10GE 62918bTolerant40AC-SUNSETforeignSemi-Resistant11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
11IUTA3Iran-AzarbayjanTolerant41IUTC111Iran-IsfahanSemi-Resistant12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
12AC-STIRLINGaTolerant42IUTC114Iran-IsfahanSemi-Resistant13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
13IUTC229Iran-IsfahanTolerant43IUTC117Iran-IsfahanSemi-Resistant14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
14IUTC4110Iran-IsfahanTolerant44IUTC128Iran-IsfahanSemi-Resistant15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
15IUTC4410Iran-IsfahanTolerant45IUTE1111Iran-IsfahanSemi-Resistant16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
16IUTE1141Iran-IsfahanTolerant46IUTE1131Iran-IsfahanSemi-Resistant17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
17IUTE118Iran-IsfahanTolerant47IUTE2426Iran-IsfahanSemi-Resistant18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
18IUTE2121Iran-IsfahanTolerant48IUTK11Iran-KordistanSemi-Resistant19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
19IUTE24110Iran-IsfahanTolerant49IUTK15Iran-KordistanSemi-Resistant20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
20IUTE2417Iran-IsfahanTolerant50IUTS136Iran-KhorasanSemi-Resistant21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
21IUTE2428Iran-IsfahanTolerant51IUTS149Iran-KhorasanSemi-Resistant22IUTE2431Iran-IsfahanTolerant52IUTS344Iran-KhorasanSemi-Resistant
22 IUTE2431 Iran-Isfahan Tolerant 52 IUTS344 Iran-Khorasan Semi-Resistant
23 IUTE2449 Iran-Isfahan Tolerant 53 IUTS411 Iran-Khorasan Semi-Resistant
24 IUTH21 Iran-Hamedan Tolerant 54 IUTC116 Iran-Isfahan Resistant
25 IUTH27 Iran-Hamedan Tolerant 55 IUTE14310 Iran-Isfahan Resistant
26 IUTK12 Iran-Kordistan Tolerant 56 IUTK21 Iran-Kordistan Resistant
27 IUTK313 Iran-Kordistan Tolerant 57 IUTM13 Iran-Markazi Resistant
28 IUTM11 Iran-Markazi Tolerant 58 IUTM420 Iran-Markazi Resistant
29 IUTM112 Iran-Markazi Tolerant 59 IUTS231 Iran-Khorasan Resistant
30 IUTM115 Iran-Markazi Tolerant 60 IUTS3110 Iran-Khorasan Resistant

Table 1. Origin and grouping of safflower genotypes according to pathogenicity test related to Fusarium wilt

^a Plant GeneResources of Canada / Agriculture and Agri-food Canada Saskatoon Research Centre / 107 Science place / Saskatoon, Saskatchewan S7NoX2 / Canada

^b Federal Centre for breeding Research on Cultivated plants / Plant Genetic Resources Collection / Bundesallee 50 / 38116 Braunschweig / Germany

radicle; and 10 = dead seed, non-germinated rotted seedling (Farias *et al.* 1989)

DNA extraction

Young emerging leaves were harvested from three weeks-old plants. Genomic DNA was extracted from 100 mg of young leaf tissue by DNeasy® Plant Mini Kit protocol. DNA concentration was quantified , using a spectrophotometer. For AFLP analysis of genomic DNA, 50 ng was appropriate.

AFLP analysis

The AFLP procedure was performed according to the method described by Vos *et al.* (1995) with minor modifications. Briefly, the combinations of two restriction endonucleases, *EcoRI* and *MseI*, were used for digestion of 50 ng DNA. Digested DNA were added to 10 U of MseI, 10 U of EcoRI, 1U of T4 DNA ligase, 50 pmol of MseI adapters and 50 pmol of EcoRI adapters, 10mM ATP in 10 µl reaction volume of restriction-ligation buffer of OPA, incubated 5 hr at 65°C for combining double stranded adapters. The product were diluted fivefold by distilled water and 6 ul was used as a template in the preselective amplification. The preselective PCR contained 6 µl of template, 1 U of Taq DNA polymerase, 2.5 µl of 10X Taq DNA polymerase buffer, 0.2 mM of dNTPs mix, and 50 ng of EcoRIO (5'-GACTGCGTACCAATTC-3') and MseI0 (5'-GATGAGTCCTGAGTAA-3') primers without selective nucleotides, in a total volume of 25 µl. The PCR program consisted of thirty cycles of 30s at 94°C, 30s at 60°C and 1 min at 72 °C in an Eppendorf thermocycler (Vos et al., 1995).

Source of variation	Degree of	Mean squares		
	freedom	Necrosis	Mortality	
Replication	2	190.52	235.2	
Genotype	59	33.94**	340.1**	
Error	118	13.83	93.2	
** significant at 10/ land				

 Table 2. Analysis of variance for mortality and necrosis in different safflower genotypes.

** significant at 1% level

Preselective products were electrophorized in agarose gel for determination of their suitability. The selective PCR contained 2 μ l of the diluted (1:20) product of the preselective PCR as a template, 0.75 U of Tag DNA polymerase, 2 µl of Tag DNA polymerase buffer, 2U (0.2 mM) of dNTPs mix, 2.5 μ l (37.5ng/ μ l) *Eco*RI primer and 2.5 μ l (37.5ng/ μ l) *MseI* primer in a total volume of 20 µl. Twenty primer pairs with 2 and 3 additionals to the EcoRIO and MseI0 primers were used for the selective amplification. Samples were amplified through 40 cycles as follows, denaturation for 30s at 94°C, annealing for 30 s at 65°C and extension for 1 min at 72 °C. The annealing temperature of 65 °C in the first cycle was reduced by 1°C for each of the next 12 cycles and was kept at 56 °C for the remain 23 cycles and the final extension step was carried out at 72 °C for 1 min. Each sample was diluted 1:1 with loading buffer, denatured and fractionated on a 6% polyacrylamide sequencing gel in TBE buffer. Gels were run at constant power, and stained by silver-staining method.

Data analysis

Polymorphic bands were manually scored in the range of 300-1500 bp as binary data with presence as 1 and absence as 0 and also using Cross Checker software, ver 2.91. Polymorphic bands were scored to determine the similarity among the genotypes. Cluster analysis was performed on the similarity matrix employing the unweighted pair-group method with arithmetic mean (UPGMA) algorithm method (Sneath 1973). The Jaccard's similarity coefficient values were calculated and a similarity coefficient was constructed using NTSYS pc software, ver. 2.02.

For determination of reproducibility percentages and molecular evolution, bands were scored with \mathbf{a} and \mathbf{t} instead of $\mathbf{0}$ and $\mathbf{1}$, and analyzed by Mega software, ver 6.0.6 to construct minimum evolution tree. The analysis of molecular variance was performed using AMOVA software (Ver 2.001. Ge-

202

netics and Biometry Lab, Dept. of Anthropology, University of Geneva).

Result

Fungal isolation

Different species of Fusarium were isolated from sample collections. Fusarium strains isolated from disease samples were identified morphologically according to the Manual of Fusarium species (Nelson et al. 1983). The morphological concept of F. solani proposed by Snyder and Hansen (1941) and Nelson et al. (1983) is characterized by producing sparse to abundant, white cream mycelium on potato dextrose agar medium. Fusarium solani produces asexual spores (microconidia and macroconidia). Macroconidia have usually three-septate from usually cream-colored but sometimes green, blue or red sporodochia and are slightly curved, are rather wide and thick walled, and may have a slightly blunted apical end. Microconidia are abundant, oval to kidney shaped, and formed in false heads on very long monophialides. Chlamydospores are abundant. Chlamydospores are produces in infected or dead tissues or seed and can be spread by air, equipment, and water.

Pathogenicity test

However different fungi like *Phytophthora drechselri*, *Rhizoctonia solani* and *Fusarium oxyspororum* were reported as safflower root rot agent in other parts of Iran, in this research just *Fusarium* species were isolated from the infected plants. Twenty different isolated *Fusarium* species were used for pathogenicity test in laboratory and greenhouse conditions and amongst them just five *F. solani* isolates could cause the disease symptoms in inoculated plants. Firstly, the color of infected plants changed to yellow and in spite of dry root rot, the plants established firmly in the soil. The severe aggressive isolate was used for initial evaluation of genotyping.

Resistance of genotypes to Fusarium root rot

The results illustrated that development rate of disease symptoms from root to stem is faster in tolerant genotypes than susceptible ones. In addition there was significant difference between

Table 3. Means of necrosis an	d mortality in different
safflower genotypes.	

Group	Number of	Necrosis	Mortality
	genotype	(mm)	(%)
Resistant	7	11.5^{c^*}	25.9°
Semi-resistant	19	15.28 ^d	36.9 ^d
Tolerant	29	18.79 ^c	48.0 ^c
Semi-susceptible	3	21.60 ^b	56.6 ^b
Susceptible	2	27.21 ^a	72.0 ^a

* means with the same letter in each column are not significantly different at least significant difference (P \leq 0.1)

genotypes in reaction to disease (necrosis rate and mortality percentage) (Table 3). The mortality percentage varied from 25.9 to 72 % in resistance and susceptible genotypes, respectively. Based on the means of necrosis and death percentage, the genotypes were significantly classified in five distinct groups including seven resistant genotypes, 19 moderately resistant, 29 tolerant, three moderately susceptible, and two susceptible (Tables 1 and 3).

lines IUTE14310 and IUTC121 with mean necrosis of 9.67 and 28.33 mm, and death percentage of 32 and 74, were the most resistant and susceptible genotypes respectively. The commercial imported cultivars of AC Sunset and AC Sterling belonged to tolerant and moderately susceptible groups, respectively. However, Saffire was classified as a tolerant genotype (better to give the rate of tolerance of cultivars). The local landrace of KOSE, widely grown in Isfahan province, was classified as a susceptible genotype based on phenotypic and genetic coefficients of variation (23.85 and 18.32 %, respectively) and relatively high broad-sense heritability (59%) for necrosis. Phenotypic characteristics, beside genetic coefficients of variation and also a high broad-sense heritability for dead plants indicated genetic variation in genotypes. These revealed that selection could be effective in resistant genotypes production to fusarium root rot disease as shown in Table 4.

Genetic diversity as defined by AFLP fingerprinting

Twenty primer combinations were tested on sixty safflower genotypes. The banding patterns of generated fingerprints were evaluated and the number of polymorphic bands was recorded. Some primer combinations showed not-scoreable fingerprints because of the amplification of too many and/or faint bands. A total number of 877 amplification products were scored with an average frequency of 45 bands per primer. The distance coefficient which is the proportion of unmatched markers suggested as an appropriate estimator of relatedness in two or more genotypes results from the same genetic changes (Skrotch et al. 1992). A similarity matrix was then employed to cluster the data using UPGMA algorithm and PCA. The highest relatedness coefficient was obtained by similarity matrix data-based on Jacquard's coefficient (r_{u} = 0.945) in comparison with computing the COPH value ($r_c = 0.830$) and Simple Matching coefficient $(r_s = 0.929)$. SMCs ranged from 0.44 (for genotypes IUTH21 and IUTC4410) that is, the lowest genetic similarity to 0.995 (for genotypes IUTS3110 and KOSE), the highest genetic similarity. Low polymorphic patterns may indicate the germplasms are reasonably homogeneous.

The UPGMA cluster analysis showed that the safflower genotypes were classified into different marker-based groups: Susceptible genotypes, IUTC121 and KOSE, in genetic distance of 0.75 formed distinct clusters and appeared to be most distantly related to all others. Cluster two had the largest number of genotypes. The dispersion into the various groups appeared to be random, though a few genotypes formed distinct clusters. Some genotypes such as IUTS144 (Tolerant) in genetic distance of 0.64 separated from other genotypes (Fig. 1).

Table 4. Variance component, coefficient of variation and general heritability for necrosis and mortality in safflower genotypes

Character	Genetic	Environmental	Phenotypic	Coefficient of	Coefficient of	General
	variation	variation	variation	Phenotypic variation	genetic variation	heritability
Necrosis	6.7	4.6	11.3	23.9	18.4	59
Mortality	82.3	31.1	113.4	25	21	73

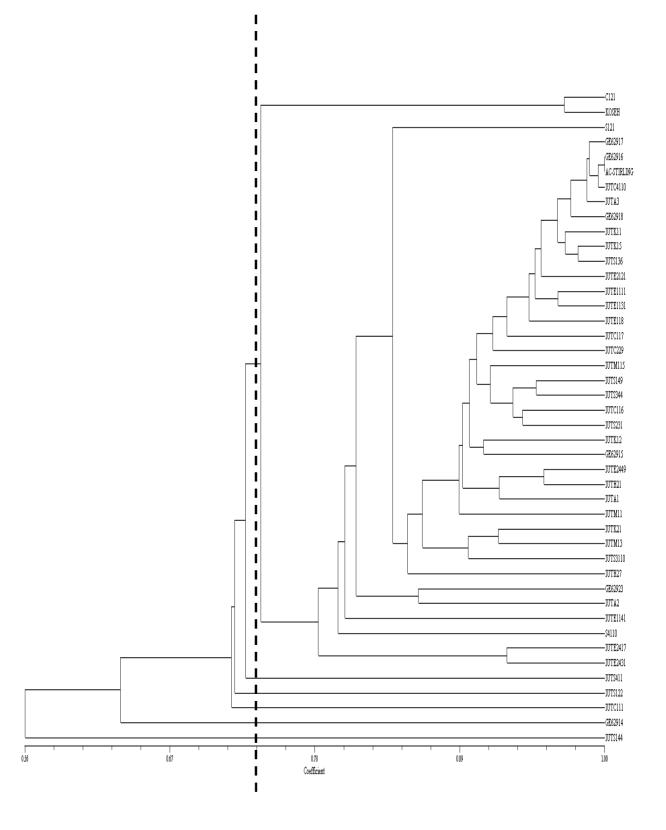


Fig. 1. The genetic relationship among all AFLP patterns of Safflower according to combination of data obtained with the twenty primers is represented in the dendrogram produced by UPGMA clustering.

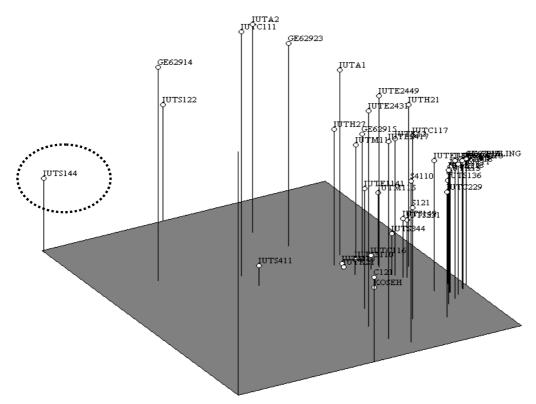


Fig. 2. Three-dimensional display generated by NTSYS of principal coordinate analysis (PCA) of 49 selected Safflower genotypes based on the combination of data obtained with the twenty AFLP primers. X, Y and Z-axes are accounted 70% of the variation observed.

Principal coordinate analysis (PCA)

PCA is mostly used as a tool in exploratory data analysis and for making predictive models and group the population by similarity coefficients or variance-covariance values of the component traits of the entities and is more informative in differentiation among major groups, while the clusteranalysis provides higher resolution among closely related populations. The result of PCA is usually discussed in terms of component scores and is the simplest of the true eigenvector-based (Liu *et al.*, 2001).

The PCA indicated that the first three components accounted for 86.9% of the total variation and rationalizes variety percentage or shows data incorporation, that is, fragments amplification happened in special locations of genome or genotypes having generous genetic similarity. By principal component analysis on AFLP data, two and three dimensional plots were obtained (Fig. 2).

Data analysis by MEGA software revealed that 100% reproducibility was obtained between two

susceptible genotypes (IUTC121 and KOSE) and two tolerant genotypes (IUTE2431 and IUTE2417) (Fig. 3).

A correlation was observed between molecular data and the results of resistance evaluation in this clustering where susceptible and lines were separated from each other. Only in group two, a semi-susceptible genotype is located beside one tolerant with 54% reproducibility. It seems that this dissension maybe due to errors in pathogenicity test or could be due to genetic proximity between these genotypes.

Analysis of variance of resistant genotypes obtained by AMOVA software demonstrated significant differences comparison with other genotypes. Also susceptible genotypes had significant differences with resistant, semi-resistant and tolerant genotypes, but no differences with semisusceptible (Table 5). AMOVA analysis revealed that susceptible and semi-susceptible genotypes had the minimum and maximum genetic diversity, respectively (Table 6). Rahimi and Sharifnabi: Fusarium root rot resistance in safflower genotypes

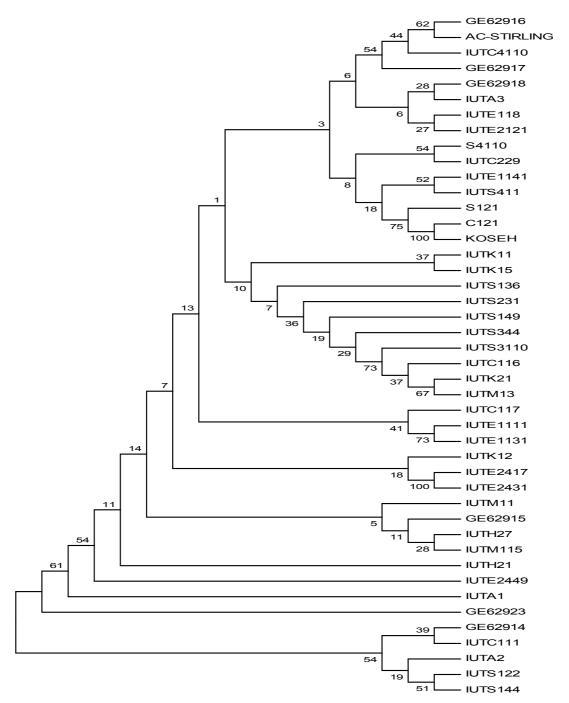


Fig. 3. The genetic relationship among all AFLP patterns of Safflower based on the combination of data obtained with the twenty primers is represented in the dendrogram produced by Mega software based on data reproducibility. Bootstrap values for 1000 replications are indicated at the corresponding node for each cluster.

Discussion

Crown and root rot is one of the most important diseases in all crops. Different phytopathogens are known as agents of these symptoms. *Phytophthora* (Huai *et al.* 2013), *Fusarium* (Nelson *et al.* 1994), *Gaeumannomyces*, *Phialophora*, *Magnaporthe* (Elliot *et al.* 1991) and *Rhizoctonia* (Khan & Bolton 2010) are among the famous fungi that are reported in different crops. The result of fungal isolation and pathogenicity test in present study demonstrated that beside the *Phytophthora* species, the most common causal agent of safflower root rot in Iran was identified as *Fusarium solani*.

Group	Susceptible	Semi- susceptible	Tolerant	Semi-resistant	resistant
susceptible	*	_	+*	+	+
Semi- susceptible	_ NS	*	_	_	+
Tolerant	+	_	*	_	+
Semi-resistant	+	_	_	*	+
resistant	+	+	+	+	*

Table 5. Analysis of variance of safflower genotypes using AMOVA software

* Significant difference

NS: Non- Significant difference

Table 6. Average gene diversi	v among safflower genoty	pes using AMOVA software

-	<u> </u>	<u> </u>	
	Sum of square frequency	Gene diversity	Average gene diversity over loci
S	0.5000	1.0000 ± 0.5000	0.024390 ± 0.026718
SS	0.5000	1.0000 ± 0.5000	0.190244 ± 0.192667
Т	0.0500	1.0000 ± 0.0158	0.159487 ± 0.081109
SR	0.0667	1.0000 ± 0.0243	0.174309 ± 0.090204
R	0.2000	1.0000 ± 0.1265	0.080000 ± 0.050416

In the case of soil-borne pathogens like Fusarium sp., conventional methods cannot manage plant protection so the development of resistant varieties seems to be the best measure. Heaton and Klisiewicz (1981) made a resistance interspecific sterile hybrid, C. tinctorius ×C. lanatus against Fusarium wilt and some other pathogens. To deal with the damage caused by F. solani in safflower, it is necessary to select resistance cultivars and subsequently, isolate and locate resistance genes. It may increase stand establishment safflower, especially in arid and semi-arid regions. After fungal isolation and pathogenicity test that proved the role of *F. solani* in damping off of safflower seedlings, different safflower genotypes were evaluated for the level of resistance to the selected aggressive isolate based on pathogenicity test, phenotypically. In terms of reaction to the disease, out of 60 examined genotypes, these genotypes were classified into five distinct groups. Two samples identified as IUTC121 and KOSE were completely susceptible and genotypes IUTE14310, IUTK21, IUTM13, IUTM420, IUTS231 and IUTS3110 were resistance to the F. solani. The remained genotypes were grouped as tolerate, semi susceptible and semi resistant. The same grouping in safflower genotypes was done by Singh et al. (2008) against safflower wilt caused by Fusarium oxysporum f.sp. carthami and by Pavithra et al. (2015) against Alternaria leaf spot.

Although safflower is one of the noteworthy agricultural crop in Iran, Iranian genotypes has not been comprehensively studied for their genetic diversity. Regards to the phenotypic variation, it was inferred that there is possibility to find enough genetic diversity in genotypes in the case of Fusarium root rot resistance. So, the present study was initiated with the objective of assessing the genetic diversity of a collection of safflower genotypes in combination with phenotypic resistance to Fusarium root rot in another word Diversity in safflower genotype collection might determine relationships among molecular and phenotypic characters. AFLP marker was used to investigate genetic diversity among different genotypes of safflower. The results showed that the five studied groups of varieties (regards to the resistance to Fusarium root rot) are almost equally divergent and the safflower gene pools of foreign and domestic genotypes did not appear to be genetically more diverse in either. In other word, molecular analysis did not show a complete logical correlation with resistance evaluation analysis, although there was correlation in some groups. The two susceptible genotypes, KOSE and IUTC121, and some tolerant genotypes such as IUTS144 diverged from the other genotypes. Similarities in genotypes can arise due to convergent evolution, selection or sharing of

common parentage (Mahasi et al. 2009). Clustering of Resistant and semi-resistant genotypes in dispersed clusters close to one another is acceptable. Clustering with Mega software has more accordance with morphological and physiological data because susceptible and resistant genotypes were separated completely from other genotypes. A simple relatedness coefficient was not appropriately recognized because in AFLP techniques, different alleles are not identified as distinct bands. Our results were in accordance with the results of Panahi et al. (2013) which assessed the genetic diversity of 20 accessions of safflower using RAPD, AFLP and 12 agro-morphological traits and their results showed that AFLP displayed no congruence to RAPD and agromorphological data while these genotypes have high genetic diversity with ISSR (Panahi and Ghorbanzadeh Neghab 2013). It should be noted that in other study conducted by Kumar et al. (2014) on assessment of genetic diversity and population structure in a global collection of 531 accessions of C. tinctorius L. using AFLP markers, Iran-Afghanistan accessions showed maximum diversity and were distributed in other clusters, while the result of this research showed very narrow genetic diversity between different safflower genotypes. Johnson et al. (2007) stated that the high AFLP marker uniformity within safflower genotypes is likely to be associated with predominant self-pollination, although the species also has potential for substantial outcrossing. They suggested that since molecular markers and phenotypic data were only weakly correlated, marker data in Safflower should be balanced with phenotypic techniques to provide a complete picture of overall diversity and distinguish safflower populations from different regions. Resistance may be produced or enhanced by the

References

effect of one or many genes, along with environmental effects, whereas AFLP has a random nature and only assesses a part of the genome. These reasons provided rationale for our results. Mahasi *et al.* (2009) stated that application of RAPD markers can be useful in Safflower breeding programs.

Markers are useful for genotyping accessions and other factors but plant breeders still need the agronomic data to compliment molecular information in order to understand variation among accessions (Mahasi et al. 2009). In conclusion, further studies should therefore be carried out, using larger variety samples to clarify the general attitude of safflower genetic variation and define valuable germplasms for improvement of this crop. This study also showed that the AFLP technique could not perfectly discriminate safflower varieties based on their resistance to Fusarium solani. With incorporation of AFLP and Motif Directed Profiling (Dezhestan et al. 2010) finding the genes related to resistance is more accessible. However, the other methods like RAPD (Morid & Hajmansoor 2010) and cleaved amplified polymorphic sequence (CAPS) (Morid & Hajmansoor 2012) can also use for genetic screening.

Acknowledgement

The authors wish to acknowledge the financial support provided by research deputy of the Isfahan University of Technology, Dr. G. Saeidi and National Gene Bank, Seed and Plant Improvement Institute (SPII) specially Dr. Ahmad Abasi Moghadam, during tenure of this research. We also thank Plant Gene Resources of Canada and Federal Centre for breeding Research on Cultivated plants of Germany for providing genotypes.

- Aoki T., O'Donnell K., Homma Y. and Lattanzi A. R. 2003. Sudden-death syndrome of soybean is caused by two morphologically and phylogenetically distinct species within the *Fusarium solani* species complex-*F. virguliforme* in North America and *F. tucumaniae* in South America. Mycologia 95:660–684.
- Ashri A. and Knowles P. F. 1960. Cytogenetics of safflower (*Carthamus* L.) species and their hybrids. Agronomy Journal 52:11-17.
- Dajue L. and Mündel H. H. 1996. Safflower (Carthamus L.). Roma, Italy, International Plant Genetic Resources Institute. 83 pp.

Dezhsetan S., Mohammadi S.A., Moghaddam M., Aharizah S. and Vossen J. H. 2010. Isolation of resistance gene analogues (RGAs) in potato using motif directed profiling method and development of their genetic map. Seeds and Plants Improvement Journal 1:105-121.

- Frarias G. M. and Griffin G. J. 1989. Roles of *Fusarium oxysporum* and *F. solani* in Essex disease of soybean in Virginia. Plant Disease 73:38-42.
- Garcia A. A. F., Benchimol L. L., Barbosa A. M. M., Geraldi I. O., Souza C. L. and Souza A. P. 2004. Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genetics and Molecular Biology 27:579-588.
- Heaton T. C. and Klisiewicz J. M. 1981. A disease-resistant safflower alloploid from *Carthamus tinctorius* L. × *C. lanstus* L. Canadian Journal of Plant Science 61: 219-224.
- Huai W. x., Tian G., Hansen E. M., Zhao W. x., Goheen E. M., Grunwald N. J. and Cheng C. 2013. Review Article, Identification of *Phytophthora* species baited and isolated from forest soil and streams in north-western Yunnan province, China. Forest Pathology 43:87-103.
- Johnson R. C, Kisha T. J and Evans M. A. 2007. Characterizing safflower germplasm with AFLP molecular markers. Crop Science 47:1728-1736.
- Khan M. A., Witzke-Ehbrecht S.V., Maass B. L. and Becker H. C. 2009. Relationships among different geographical groups, agro-morphology, fatty acid composition and RAPD marker diversity in Safflower (*Carthamus tinctorius*). Genetic Resource and Crop Evolution 56:19-30.
- Kumar S., Ambreen H., Murali T. V., Bali S., Agarwal M., Kumar A., Goel S. and Jagannath A. 2015. Assessment of genetic diversity and population structure in a global reference collection of 531 accessions of *Carthamus tinctorius* L. (Safflower) using AFLP markers. Plant Molecular Biology Reporter 33:1299-1313.
- Liu F., Sun G.L., Salomon B., Bothmer von R. 2001. Distribution of allozymic alleles and genetic diversity in the American barley core collection. Theoretical and Applied Genetics 102:606-615.
- Lombard L., Merwe N. A., Groenewald J. Z. and Crous P. W. 2014. Generic concepts in *Nectriaceae*. Studies in Mycology 80:189–245.
- Mahasi M. J., Wachira F. N., Pathak R. S. and Riungu T. C. 2009. Genetic polymorphism in exotic safflower (*Carthamus tinctorious* L.) using RAPD markers. Journal of Plant Breeding and Crop Science 1:8-12.
- Matuo T. and Snyder W. C. 1973. Use of morphology and mating populations in the identification of formae speciales in *Fusarium solani*. Phytopathology 63:562-565.
- Morid B., Hajmansoor S. H. and Kakvan N. 2012. Screening of resistance genes to fusarium root rot and fusarium wilt diseases in tomato (*Lycopersicon esculentum*) cultivars using RAPD and CAPs markers. European Journal of Experimental Biology 2:931-939.
- Nelson P. E., Cecelia D. and Anaissie E. J. 1994. Taxonomy, biology, and clinical aspects of *Fusarium* species. Clinical Microbiology Reviews 7: 479-504.
- Nelson P. E., Toussoun T. A. and Morasas W. F. O. 1983. *Fusarium* Species: An illustrated manual for identification. Pennsylvania State University Press, Pennsylvania. 206 pp.
- O'Donnell K. 2000. Molecular phylogeny of the *Nectria haematococca-Fusarium solani* species complex. Mycologia 92:919–938.
- O'Donnell K., Sutton D. A., Fothergill A., McCarthy D., Rinaldi M. G., Brandt M. E., Zhang N. and Geiser D. M. 2008. Molecular phylogenetic diversity; multilocus haplotype nomenclature, and in vitro antifungal resistance within the *Fusarium solani* species complex. Journal of Clinical Microbiology 46:2477– 2490.
- Panahi B. and Ghorbanzadeh Neghab M. 2013. Genetic characterization of Iranian safflower (*Carthamus tinctorius*) using inter simple sequence repeats (ISSR) markers. Physiology and Molecular Biology of Plants 19:239–243.
- Panahi B., Afzal R., Ghorbanzadeh Neghab M., Mahmoodnia M., Paymard B. 2013. Relationship among AFLP, RAPD marker diversity and agromorphological traits in safflower (*Carthamus tinctorius* L.). Progress in Biological Sciences 3:90-99.
- Pavithra K. P., Patil R. S., Harijan Y. and Basavarajappa M. P. 2015. Alternaria disease screening in safflower (*Carthamus tinctorius* L.). Trends in Biosciences 8:4827-4831.
- Polak J. and Bartos P. 2002. Natural sources of plant disease resistance and their importance in the breeding. Czech Journal of Genetic Plant Breeding 38: 146–149.
- Sehgal D. and& Raina S. N. 2005. Genotyping safflower (Carthamus tinctorius) cultivars by DNA finger-

printing. Euphytica 146:67–76.

- Singh V., Ranaware A. M. and Nimbkar N. 2008. Breeding for *Fusarium* wilt resistance in safflower. 7th international safflower conference, 2008. Wagga, NSW, Australia.
- Skrotch P., Tivang J. and Nienhuis J. 1992. Analysis of genetic relationship using RAPD marker data. In: Application of RAPD Technology to Plant Breeding. Joint Plant Breeding Symposia Series, pp 26-30.
- Sneath P. H. A. and Sokal R. R. 1973. Numerical taxonomy. San Francisco, USA, W.H. Freeman & Co. 573 pp.
- Snyder W. C. and Hansen H. N. 1941. The species concept in *Fusarium* with reference to section *Martiella*. American Journal of Botany 28:738–742.
- Tarkesh Esfahani S., Shiran B. and Balali G. 2009. AFLP markers for the assessment of genetic diversity in European and North American potato varieties cultivated in Iran. Crop Breeding and Applied Biotechnology 9: 75-86.
- Vale F., Parlevliet J. E. and Zambolim L. 2001. Concepts in plant disease resistance. Fitopatologia Brasileira 26: 577-586.
- Vos P., Hogers R., Bleeker M., Reijans M., Lee T., Hornes M., Frijters A., Pot J., Peleman J. and Kuiper M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23:4407–14.
- Yang Z. 1994. Breeding for resistance to Fusarium head blight of wheat in the mid to lower Yangtze River Valley of China. Wheat Special Report No. 27. CIMMYT, Mexico. D. F., p 16.
- Yazdi-Samadi B., Maali Amiri R., Ghannadha M. R. and Abd-Mishani C. 2001. Detection of DNA polymorphism in landrace populations of Safflower in Iran using RAPD-PCR technique. In: Bergman J, Mundel HH. (ed). Proceeding of the fifth International Safflower Conference, 2001. Williston, ND, Sidney MT. North Dakota State University, Fargo.
- Zhang N., O'Donnell K., Sutton D. A., Nalim F. A., Summerbell R. C., Padhye A. A. and Geiser D. M. 2006. Members of the *Fusarium solani* species complex that cause infections in both humans and plants are common in the environment. Journal of Clinical Microbiology 44:2186–2190.