ارتباط بین جمعیت اولیه نماتد ریشه گرهی (Meloidogyne javanica) و میزان خسارت به گیاه بامیه (Abelmoschus esculentus

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد، گروه بیماری‌شناسی گیاهی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.

2 دانشیار، گروه بیماری‌شناسی گیاهی، واحد مرودشت، دانشگاه آزاد اسلامی، مرودشت، ایران.

چکیده

به منظور بررسی اثر جمعیت­های اولیه­ی نماتد Meloidogyne javanica روی رشد و عملکرد رقم سلطانی گیاه بامیه (Abelmoschus esculentus) در سال 1392 آزمایش مزرعه­ای درون کرت­هایی به ابعاد 3 × 2 متر انجام شد. این پژوهش در قالب طرح کاملا تصادفی با پنج تکرار و چهارده سطح جمعیت که از سری‌های هندسی تبعیت می‌کردند (0 تا 512 تخم یا لارو سن دوم در هر سانتی‌متر مکعب خاک) انجام شد. در سطوح بالای جمعیت نماتد (256 <)، کلیه­ی گیاهان مورد آزمایش از بین رفتند. داده‌های وزن تر و خشک اندام هوایی و میزان محصول به خوبی در معادله خسارت سین‌هورست جایگذاری شدند و حد تحمل برای این صفات به ترتیب 34/0، 33/0 و 28/0 تخم یا لارو سن دوم در هر سانتی‌متر مکعب خاک برآورد شد. حداکثر نرخ تکثیر نماتد در شرایط مزرعه 749 و تراکم تعادل آن 159 عدد تخم و لارو سن دوم در هر سانتی‌متر مکعب خاک تخمین زده شد. فاکتور تولیدمثل با جمعیت اولیه نماتد ارتباط منفی داشت و بیشترین فاکتور تولیدمثل در کمترین جمعیت اولیه نماتد مشاهده شد. آستانه خسارت گیاه بامیه (کاهش 10% محصول) بر اساس برآورد مدل رگرسیونی سین‌هورست، تراکم 85/0 عدد تخم یا لارو نماتد در هر سانتی‌متر مکعب خاک بود که نشان دهنده­ی حساسیت گیاه بامیه به نماتد M. javanica است.

کلیدواژه‌ها


عنوان مقاله [English]

The relationship of initial population densities of Meloidogyne javanica and damage level on okra (Abelmoschus esculentus)

نویسندگان [English]

  • H. Ahmadi 1
  • M.R. Moosavi 2
چکیده [English]

A field experiment was conducted in the 2 × 3 m plots to determine the effect of different initial population densities of Meloidogyne javanica on growth parameters and yield of okra (Abelmoschus esculentus; cv. Soltani) in 2013. This research was carried out based on completely randomized design (CRD) with five replications using a geometric series of 14 nematode population densities (0 to 512 eggs or second stage juveniles (J2) / cm3 soil). The plants died at high levels of nematode population (> 256). The relative shoot fresh and dry weight and relative yield fitted the Seinhorst damage model and the tolerance limit for those traits was 0.34, 0.33 and 0.28 eggs or J2 / cm3 soil, respectively. The maximum multiplication rate was 749 and the equilibrium density was 159 eggs or J2 / cm3 soil. Nematode reproduction factor was negatively correlated with the initial populations as the highest multiplication was occurred at the lowest initial population densities. Damage threshold (10% yield loss) of okra to M. javanica was estimated as 0.85 eggs or J2 / cm3 soil which represented the susceptibility of okra plant to M. javanica.

کلیدواژه‌ها [English]

  • Damage functions
  • Forecasting
  • population dynamics
 

Abad P., Castagnone-Sereno P., Rosso M-N., de Almeida Engler J. and Favery B. 2009. Invasion, feeding and development, pp. 163–181. In: R. N. Perry, M. Moens and J. L. Starr (Eds). Root-knot nematodes. CABI Publishing, UK.

Ahmadi A. R. and Tanha Maafi, Z. 2012. Distribution and infection severity of the root-knot nematodes in vegetable fields of Khuzestan province. 20th Iranian Plant Protection Congress, 25–28 August 2012; Shiraz, p. 653

Barker K. R. and Olthof T. H. A. 1976. Relationship between nematode population densities and crop responses. Annual Review of Phytopathology 14: 327–353.

Bhatti D. S. and Jain R. K. 1979. Estimation of loss in okra, tomato and brinjal yield due to Meloidogyne incognita. Indian Journal of Nematology 7: 37–41.

Bridge J. and Starr J. L. 2007. Plant nematodes of agricultural importance. Manson Publishing, UK. 152 p.

Charegani H., Majzoob S., Hamzehzarghani H. and Karegar-Bide A. 2012. Effect of various initial population densities of two species of Meloidogyne on growth of tomato and cucumber in greenhouse. Nematologia Mediterranea 40: 129–134.

Di Vito M., Cianciotta V. and Zaccheo G. 1992. Yield of susceptible and resistant pepper in microplots infested with Meloidogyne incognita. Nematropica 22: 1–6.

Di Vito M., Greco N. and Carella A. 1985. Population densities of Meloidogyne incognita and yield of Capsicum annuum. Journal of Nematology 17: 45–49.

Di Vito M., Greco N. and Carella A. 1986. Effect of Meloidogyne incognita and importance of the inoculum on the yield of eggplant. Journal of Nematology 18: 487–490.

Ehwaeti M. E., Phillips M. S. and Trudgill D. L. 1998. Dynamics of damage to tomato by Meloidogyne incognita. Fundamental and Applied Nematology 21: 627–635.

Escobar C., Barcala M., Cabrera J. and Fenoll C. 2015. Overview of root-knot nematodes and giant cells, pp. 1–32. In: C. Escobar and C. Fenoll (Eds). Plant Nematode Interactions: A View on Compatible Interrelationships, Advances in Botanical Research, Vol. 73. Academic Press, UK.

Ghaderi R., Kashi L. and Karegar A. 2012. The nematodes of Iran, based on the published reports until 2011. Agricultural Training and Promotion Publishing, Iran. 371 p.

Gharabadiyan F., Jamali S. and Komeili H. R. 2013. Determining of root-knot nematode (Meloidogyne javanica) damage function for tomato cultivars. Journal of Agricultural Sciences 58: 147–157.

Greco N. and Di Vito M. 2009. Population dynamics and damage levels, pp. 246–274. In: R. N. Perry, M. Moens and J. L. Starr (Eds). Root-Knot Nematodes. CABI Publishing, UK.

Hartman K. M. and Sasser J. N. 1985. Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology, pp. 69–77. In: K. R. Barker, C. C. Carter, J. N. Sasser (Eds). An Advanced Treatise on Meloidogyne Vol. II. Methodology. North Carolina State University Press, USA.

Hussain M. A. Mukhtar T. and Kayani M. Z. 2011. Assessment of the damage caused by Meloidogyne incognita on okra (Abelmoschus esculentus). The Journal of Animal & Plant Sciences 21: 857–861.

Hussey R. S. and Barker K. R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025–1028.

Hussey R. S. and Janssen G. J. W. 2002. Root-knot nematodes: Meloidogyne species, pp. 43–70. In: J. L. Starr, R. Cook and J. Bridge (Eds). Plant Resistance to Parasitic Nematodes. CABI Publishing, UK.

Jenkins W. R. 1964. A rapid centrifugal-floatation technique for separating nematodes from soil. Plant Disease Reporter 48: 692.

Karssen G. Wesemael W. M. L. and Moens M. 2013. Root-knot nematodes, pp. 73–108. In: R. N. Perry and M. Moens (Eds). Plant Nematology. 2nd ed., CABI Publishing, UK.

Lamberti F. 1979. Economic importance of Meloidogyne in subtropical and Mediterranean climates, pp. 341–357. In F. Lamberti and C. E. Taylor (Eds.). Root-Knot Nematodes (Meloidogyne species), Systematic, Biology and Control. Academic Press, USA.

Lamberti F. Boiboi J. B. and Ciancio A. 1988. Losses due to Meloidogyne incognita in okra in Liberia. Nematologia Mediterranea 16: 5–6.

Mekete T. Mandefro W. and Greco N. 2003. Relationship between initial population densities of Meloidogyne javanica and damage to pepper and tomato in Ethiopia. Nematologia Mediterranea 31: 169–171.

Moens M. Perry R. N. and Starr J. L. 2009. Meloidogyne species – a diverse group of novel and important plant parasites, pp. 1–17. In: R. N. Perry, M. Moens and J. L. Starr (Eds). Root-Knot Nematodes. CABI Publishing, UK.

Moosavi M. R. 2014. Dynamics of damage to eggplant by Meloidogyne javanica. CIBTech Journal of Zoology 3: 43–49.

Moosavi M. R. 2015. Damage of the root-knot nematode Meloidogyne javanica to bell pepper, Capsicum annuum. Journal of Plant Disease and Protection 122: 244–249.

Mueller J., Koenning S., Kirkpatrick T., Kemerait B., Overstreet C. and Nichols B. 2012. Managing Nematodes in Cotton-Based Cropping Systems. Cotton Inc., USA, 4 p. http://www.cottoninc.com/fiber/AgriculturalDisciplines/Nematology/2012-Managing-Nematodes/2012-Managing-Nematodes-PDF.pdf

Noling J. W. 2009. Nematode Management in Okra. Fact Sheet ENY-043 (NG027). Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, USA. 7 p. http://nematology.ifas.ufl.edu/assaylab/Documents/Okra.pdf

Ravichandra N. G. 2014. Nematode population threshold levels, pp. 101–114. In: N. G. Ravichandra (Ed). Horticultural Nematology. Springer, Netherlands.

Russo G., Greco N., d’Errico F. P. and Brandonisio A. 2007. Impact of the root-knot nematode, Meloidogyne incognita, on potato during two different growing seasons. Nematologia Mediterranea 35: 29–34.

Safiuddin S. S. and Sharma S. 2011. Pathogenicity of root-knot nematode, Meloidogyne incognita and root rot fungus, Rhizoctonia solani on okra (Abelmoshcus esculentus L.). e-Journal of Science & Technology 6: 97–102.

Schomaker C. H. and Been T. H. 2006. Plant growth and population dynamics, pp. 275–301. In: R. N. Perry and M. Moens (Eds). Plant Nematology. CABI Publishing, UK.

Seinhorst J. W. 1965. The relationship between nematode density and damage to plants. Nematologica 11: 137–154.

Seinhorst J. W. 1967a. The relationship between population increase and population density in plant parasitic nematodes – II. Sedentary nematodes. Nematologica13: 157–171.

Seinhorst J. W. 1967b. The relationship between population increase and population density in plant parasitic nematodes – V. Influence of damage to the host on multiplication. Nematologica13: 481–492.

Seinhorst J. W. 1972. The relationship between yield and square root of nematode density. Nematologica 18: 585–590.

Seinhorst J. W. 1986a. The development of individuals and populations of cyst nematodes on plants, pp. 101–117. In: F. Lamberti and C. E. Taylor (Eds). Cysts Nematodes. Academic Press, UK.

Seinhorst J. W. 1986b. Effects of nematode attack on the growth and yield of crop plants, pp. 191–209. In: F. Lamberti and C. E. Taylor (Eds). Cysts Nematodes. Academic Press, UK.

Seinhorst J. W. 1998. The common relation between population density and plant weight in pot and microplot experiments with various nematode plant combinations. Fundamental and Applied Nematology 21: 459–468.

Stirling G. R.2000. Nematode monitoring strategies for vegetable crops. RIRDC Publication No. 00/25. Canberra, Rural Industries Research and Development Corporation, Australia, 37 p. www.rirdc.gov.au/reports/Ras/00-25.

Tripathi K. K. Warrier R. Govila O. P. and Ahuja V. 2011. Biology of Abelmoschus esculentus L. (okra), Series of Crop Specific Biology Documents. Published by Ministry of Environment and Forests & Ministry of Science and Technology, New Delhi, India.

Trudgill D. L. 1995. An assessment of the relevance of thermal time relationships to Nematology. Fundamental and Applied Nematology 18: 407–417.

Tylor D. P. and Netscher C. 1974. An improved technique for preparing pernieal patterns of Meloidogyne spp. Nematologica 20: 268–269.

Wesemael W. M. L., Taning L. M., Viaene N. and Moens M. 2014. Life cycle and damage of the root-knot nematode Meloidogyne minor on potato, Solanum tuberosum. Nematology 16: 185–192.

Xing L. J. and Westphal A. 2005. A method for field infestation with Meloidogyne incognita. Journal of Nematology 37: 500–503.