شناسایی و ردیابی Phytophthora erythroseptica و دورگ‌های آن با استفاده از آغازگرهای اختصاصی

نوع مقاله : مقاله کامل پژوهشی

نویسندگان

-

چکیده

گونه­یPhytophthora erythroseptica ، عامل پوسیدگی صورتی سیب­زمینی، یکی از اُاُمیست­های بیماری­زای گیاهی است که خسارت اقتصادی قابل توجهی را در مزرعه و انبار وارد می­کند. به منظور شناسایی و ردیابی دقیق و حساس P. erythroseptica ، شش توالی هسته­ای و میتوکندریایی برای طراحی آغازگرهای اختصاصی مورد بررسی قرار گرفت. به دلیل شباهت زیاد توالی­های P. erythroseptica به خویشاوندان نزدیکش، تنها یک توالی هسته­ای (TigA) برای طراحی آغازگرهای اختصاصی مناسب تشخیص داده شد. با استفاده از آغازگرهای اختصاصی طراحی شده، شیوه­ای از واکنش زنجیره­ای ساده و تودرتو برای شناسایی و ردیابی P. erythroseptica ابداع شد. اختصاصیت آغازگرهای طراحی شده با استفاده از مجموعه­ای از گونه­های فیتوفتورا متعلق به تبارهای فیلوژنتیکی مختلف و نیز خویشاوندان نزدیک P. erythroseptica ارزیابی شد. ردیابی P. erythroseptica در دی­ان­ای خالص بیمارگر و دی­ان­ای استخراج شده از بافت­های گیاهی آلوده شامل سیب­زمینی، گوجه­فرنگی و اسفناج با استفاده از آغازگرها با موفقیت انجام شد. آغازگرهای اختصاصی10 پیکوگرم از دی­ان­ای خالص P. erythroseptica را در واکنش زنجیره­ای پلیمراز ساده ردیابی کردند، با این حال واکنش زنجیره­ای پلیمراز تودرتو، حساسیت آغازگرها را حداقل صد برابر افزایش داد. همچنین، آغازگرهای اختصاصی قادر به ردیابی P. erythroseptica به عنوان والد پدری یا مادری در جدایه­های دورگ بودند؛ این ویژگی به شناسایی یکی از والدین در دورگ­های P. erythroseptica کمک شایانی می­کند

کلیدواژه‌ها


عنوان مقاله [English]

Identification and detection of Phytophthora erythroseptica and its hybrids using specific primers

نویسندگان [English]

  • B. Safaiefarahani
  • R. Mostowfizadeh-Ghalamfarsa
  • A. Habibi
-
چکیده [English]

Phytophthora erythroseptica, the causal agent of potato pink rot, is one of the oomycete plant pathogens that causes significant losses in field and storage. In order to develop a sensitive and rapid method for detection and identification of P. erythroseptica, six nuclear and mitochondrial gene regions were investigated to design species-specific primers. Due to the high similarity of P. erythroseptica sequences to its closely related species, only one nuclear region, TigA, was appropriate to design specific primers. Using specific primers, a simple as well as a nested-PCR based method was developed for the identification and detection of P. erythroseptica. The specificity of designed primers was examined using a collection of Phytophthora species from different phylogenetic clades as well as close relatives of P. erythroseptica. In addition to pure DNA, designed primers detected P. erythroseptica in infected plant tissues including potato, tomato and spinach. Specific primers detected 10 pg of p < /em>. erythroseptica pure DNA, however, nested PCR increased primers sensitivity at least 100 times. Moreover, specific primers designed in this study were able to detect P. erythroseptica as the maternal or paternal parent species in hybrid isolates that would make a significant help to recognize one of the parental species in hybrids of P. erythroseptica.

Andjic V., Cortinas M.N., Hardy G.E.St. J., Wingfield M.J. and Burgess T.I. 2007. Multiple gene genealogies reveal important relationships between species of Phaeophleospora infecting Eucalyptus leaves. FEMS Microbiology Letters 268: 22–33.
Bertier L., Leus L., D’hondt L., de Cock A.W. and Höfte M., 2013. Host adaptation and speciation through hybridization and polyploidy in Phytophthora. PloS one8: e85385.
Blair J.E., Coffey M.D., Park S.Y., Geiser D.M. and Kang, S. 2008. A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genetics and Biology 45: 266–277.
Bonants P.J.M., Hagenaar-de Weerdt M., Man in't Veld W.A. and Baayen R.P. 2000. Molecular characterization of natural hybrids of Phytophthora nicotianae and P. cactorum. Phytopathology 90: 867–874.
Brasier C.M. 1971. Induction of sexual reproduction in single A2 isolates of Phytophthora species by Thrichoderma viride. Nature New Biology 231: 283.
Brasier C.M. 2008. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathology57:792–808.
Brasier C.M., Kirk S.A., Delcan J., Cooke D.E.L., Jung T. and Man in’t Veld W.A. 2004. Phytophthora alni sp. nov. and its variants: designation of emerging heteroploid hybrid pathogens spreading on Alnus trees. Mycological Research 108: 1172–1184.
Burgess T.I. 2015. Molecular characterization of natural hybrids formed between five related indigenous clade 6 Phytophthora species. PLoS One 10:  p.e0134225.
Cooke D.E., Schena L. and Cacciola S.O. 2007. Tools to detect identify and monitor Phytophthora species in natural ecosystems. Journal of Plant Pathology 89: 13–28.
Cooke D.E.L., Drenth A., Duncan J.M., Wagel, G. and Brasier C.M. 2000. A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genetics and Biology 30: 17–32.
Cullen D.W., Toth I.K., Boonham N., Walsh K., Barker I. and Lees A.K., 2007. Development and validation of conventional and quantitative polymerase chain reaction assays for the detection of storage rot potato pathogens, Phytophthora erythroseptica, Pythium ultimum and Phoma foveata. Journal of Phytopathology 155: 309–315.
Delshad D., Mostowfizadeh-Ghalamfarsa R, Safaiefarahani B. 2019. Potential host range and the effect of temperature on the pathogenicity of Phytophthora pseudocryptogea and its close relatives from clade 8a. Journal of Plant Pathology (In press).
Drenth A., Wagels G., Smith B., Sendall B., O’Dwyer C., Irvine G. and Irwin JA. 2006. Development of a DNA-based method for detection and identification of Phytophthora species. Australasian Plant Pathology 35: 147–159.
Drummond A.J., Ashton B., Buxton S., Cheung M., Cooper A., Heled J., Kearse M., Moir R., Stones-Havas S., Sturrock S., Thierer T. and Wilson A. 2010. Geneious v5.1, Available from http://www.geneious.com.
Durán A., Slippers B., Gryzenhout M., Ahumada R., Drenth A., Wingfield B.D. and Wingfield M.J. 2009. DNA-based method for rapid identification of the pine pathogen, Phytophthora pinifolia. FEMS Microbiology Letters 298: 99–104.
Erwin D.C. and Ribeiro O.K. 1996. Phytophthora Diseases Worldwide. APS Press. American Phytopathological Society. St. Paul, Min., USA.
Fry W.E. 2012. Principles of Plant Disease Management. Academic Press., USA. 378 pp.
Fyfe A.M. and Shaw D.S. 1992. An analysis of self-fertility in field isolates of Phytophthora infestans. Mycological Research 96: 390-394.
Gillings M.R. and Letham D.B. 1988. Phytophthora erythroseptica causing wilting and stunting of tomato. Australian Plant Pathology.18: 3–5.
Goss E.M, Cardenas M.E., Myers K, Forbes G.A., Fry W.E, Restrepo S, Grüunwald N.J., 2011. The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the Irish potato famine pathogen, P. infestans. PloS One 6: e24543.
Grisham M.P., Taber R.A. and Barnes L.W. 1983. Phytophthora rot of potatoes in Texas caused by Phytophthora parasitica and P. cryptogea. Plant Disease 67: 1259–1261.
Groves C.T. and Ristaino J.B. 2000. Commercial fungicide formulations induce in vitro oospore formation and phenotypic change in mating type in Phytophthora infestans. Phytopathology 90: 1201-1208.
Hurtado-Gonzales O.P., Aragon-Caballero L.M., Flores-Torres J.G., Man in’t Veld W. and Lamour K.H., 2009. Molecular comparison of natural hybrids of Phytophthora nicotianae and P. cactorum infecting loquat trees in Peru and Taiwan. Mycologia 101: 496–502.
Husson C., Aguayo J., Revellin C., Frey P., Ioos R. and Marc ais B. 2015. Evidence for homoploid speciation in Phytophthora alni supports taxonomic reclassification in this species complex. Fungal Genetics and Biology 77: 12–21.
Ioos R., Andrieux A., Marc ais B. and Frey P., 2006. Genetic characterization of the natural hybrid species Phytophthora alni as inferred from nuclear and mitochondrial DNA analyses. Fungal Genetics and Biology 43: 511–529.
Judelson H.S., Ah-Fong A.M.V. and Fabritius A. 2010. An RNA symbiont enhances heat tolerance and secondary homothallism in the oomycete Phytophthora infestans. Microbiology 156: 2026–2034.
Kibbe W. A. 2007. OligoCalc: an online oligonucleotide properties calculator’. Nucleic Acids Research 35: 43–46.
Kroon L.P.N.M., Bakker F.T., Van Den Bosch G.B.M., Bonants P.J.M. and Flier W.G., 2004. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology 41: 766–782.
Lambert D.H. and and Salas B. 2001. Pink rot. Pp. 33-34. In: Compendium of Potato Diseases, (Stevenson, W.R., Loria, R., Franc, G.D. &. Weingartner D.P). St. Paul: The American Phytopathological Society Press.
Li B., Liu P., Xie S., Yin R., Weng Q. and Chen Q. 2014. Specific and sensitive detection of Phytophthora nicotianae by nested PCR and loop‐mediated isothermal amplification assays. Journal of Phytopathology 163: 185–193.
Man in’t Veld W.A., de Cock A.W.A.M. and Summerbell R.C. 2007. Natural hybrids of resident and introduced Phytophthora species proliferating on multiple new hosts. European Journal of Plant Pathology 117: 25–33.
Man in’t Veld W.A., Rosendahl K.C.H.M. and Hong C. 2012. Phytophthora serendipita sp. nov. and P. pelgrandis, two destructive pathogens generated by natural hybridization. Mycologia 104: 1390–1396.
Martin F.N., Blair J.E. and Coffey M.D. 2014. A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genetics and Biology 66: 19–32.
Martin F.N., Tooley P.W. and Blomquist C. 2004. Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology 94: 621–631.
Mortimer A.M. and Shaw D.S. and Sansome. A. 1977. Genetical studies of secondary homothallism in Phytophthora drechsleri. Archives of Microbiology 111: 255-259.
Mostowfizadeh-Ghalamfarsa R. 2012. Species-specific detection of Phytophthora inundata by simple and nested-PCR. Iranian Journal of Plant Pathology 48: 69–80.
Mostowfizadeh-Ghalamfarsa R. and Banihashemi Z. 2015. Species-specific PCR identification and detection of Phytophthora drechsleri, P. cryptogea and P. erythroseptica. Iranian Journal of Plant Pathology 51: 542–552.
Mostowfizadeh-Ghalamfarsa R. and Mirsoleimani Z. 2013. Species-specific identification and detection of Phytophthora pistaciae, the causal agent of pistachio gummosis. Phytopathologia Mediterranea 52: 30–45.
Nagel J.H., Gryzenhout M., Slippers B., Wingfield M.J., Hardy G.S.J., Stukely M.J. and Burgess T.I. 2013. Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fungal Biology 117: 329–347
Nirenberg H.I., Gerlach W.F. and Grafenhan T.  2009. Phytophthora× pelgrandis, a new natural hybrid pathogenic to Pelargonium grandiflorum hort. Mycologia 101: 220-231.
Oh, E., Gryzenhout, M., Wingfield, B.D., Wingfield, M.J. and Burgess, T.I. 2013. Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus, 4: 123–131.
Peters, R.D., Clark, R.J., Coffin, A.D., Sturz, A.V., Lambert, D.H. and Miller, J.S., 2005. Limited genetic diversity in North American isolates of Phytophthora erythroseptica pathogenic to potato based on RAPD analysis. Plant Disease 89: 380–384.
Reeves R.J. and Jackson R.M. 1974. Stimulation of sexual reproduction by Phytophthora by damage. Microbiology 84: 303–310.
Royle D.J. and  Hickman C.J. 1964. Observations on Phytophthora cinnamomi. Canadian Journal of Botany 42: 300–318.
Safaiefarahani B. and Mostowfizadeh-Ghalamfarsa R. 2018. Phylogeny, morphological and physiological characterization of Phytophthora erythroseptca isolates, the causal agents of potato pink rot in different geographic regions. Iranian Journal of Plant Pathology 54: 1–13.
Safaiefarahani B., Mostowfizadeh-Ghalamfarsa R. and Cooke D.E., 2013. Characterisation of Phytophthora inundata according to host range, morphological variation and multigene molecular phylogeny. Phytopathologia Mediterranea 51: 46-65.
Safaiefarahani B., Mostowfizadeh-Ghalamfarsa R., Hardy G.E. and Burgess T.I.  2016. Species from within the Phytophthora cryptogea complex and related species, P. erythroseptica and P. sansomeana, readily hybridize. Fungal biology 120: 975–987.
Safaiefarahani B., Mostowfizadeh-Ghalamfarsa R., Hardy G.S.J. and Burgess T.I. 2015. Re-evaluation of the Phytophthora cryptogea species complex and the description of a new species, Phytophthora pseudocryptogea sp. nov. Mycological progress 14: 1–12.
Sakalidis M.L., Hardy G.E.S. and Burgess T.I. 2011. Endophytes as potential pathogens of the baobab species Adansonia gregorii: a focus on the Botryosphaeriaceae. Fungal Ecology 4: pp.1–14.
Schardl C.L. and Craven K.D. 2003. Interspecific hybridization in plant‐associated fungi and oomycetes: a review. Molecular Ecology 12: 2861–2873.
Secor G.A. and Gudmestad N.C. 1999. Managing fungal diseases of potato. Canadian Journal of Plant Pathology 21: 213–221.
Silvar C., Duncan J.M., Cooke D.E., Williams N.A., Díaz J. and Merino F. 2005. Development of specific PCR primers for identification and detection of Phytophthora capsici Leon. European Journal of Plant Pathology 112: 43–52.
Soltis P.S. and Soltis D.E. 2009. The role of hybridization in plant speciation. Annual Review of Plant Biology 60: 561–588.
Stamler, R.A., Sanogo, S., Goldberg, N.P. and Randall, J.J., 2016. Phytophthora species in rivers and streams of the southwestern United States. Applied Environmental Microbiology 82: 4696–4704.
Stamps D.J., Waterhouse G.M., Newhook F.T. and Hall G.S. 1990. Revised Tabular Key to the Species Of Phytophthora. Mycological paper 62. CAB. International Mycological Institute. UK.
Stukenbrock E.H. 2013. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytologist199: 895–907.
Taylor R.J., Salas B., and Gudmestad N.C.  2004. Differences in etiology affect mefenoxam efficacy and the control of pink rot and leak tuber diseases of potato. PlantDisease 88: 301–307.
Tooley P.W., Bunyard B.A., Carras M.M. and Hatziloukas E., 1997. Development of PCR primers from internal transcribed spacer region 2 for detection of Phytophthora species infecting potatoes. Applied and Environmental Microbiology 63: 1467–1475.
Tsao P.H., Vgale R., Hobbs H. and Farih A. 1980. Control of homotallic oospore formation in Phytophthora parasitica by culture manipulation. Transactions of the British Mycological Society 71: 153-156.
Tucker, C.M. 1931. Taxonomy of the genus Phytophthora de Bary. University of Missouri Agricultural Experiment Station Research Bulletin.
Vargas L.A. and Nielsen L.W., 1972. Phytophthora erythroseptica in Peru: Its identification and pathogenesis. American Journal of Potato Research 49: 309–320.
Wanger A., Chavez V., Huang R., Wahed A., Dasgupta A. and Actor J.K., 2017. Microbiology and Molecular Diagnosis in Pathology. Elsevier., USA. 304 pp.
Ward E., Foster S.J., Fraaije B.A. and Mccartney H.A. 2004. Plant pathogen diagnostics: immunological and nucleic acid‐based approaches. Annals of Applied Biology 145: 1–16.
Waterhouse G.M. 1963. Key to the Species of Phytophthora de Bary. Mycological paper 92. CAB International Mycological Institute. UK.
Yang X., Richardson P.A. and Hong C. 2014. Phytophthora× stagnum nothosp. nov., a new hybrid from irrigation reservoirs at ornamental plant nurseries in Virginia. PloS one, 9: p.e103450..
Yang X., Tyler B.M. and Hong C. 2017. An expanded phylogeny for the genus Phytophthora. IMA Fungus 8: 355–384.
Ye J., Coulouris G., Zaretskaya I., Cutcutach, I., Rozen, S. and Madden, T.L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134–145.
Yellareddygari S.K., Pasche J.S., Taylor R.J., Hua S. and Gudmestad N.C. 2016. Beta regression model for predicting the development of pink rot in potato tubers during storage. Plant Disease 100: 1118–1124.
Zentmyer G.A., Klure L.J. and Pond E.C. 1979. The influence of temperature and nutrition on formation of sexual structures by Phytophthora cinnamomi. Mycologia 71: 55-65.
Zolanvari S.M, Mostowfizadeh-Ghalamfarsa R. and Dadkhodaie A. 2017. Molecular identification and detection of Phytophthora melonis based on nuclear and cytoplasmic genome. Iranian Journal of Plant Pathology 53: 97–117.