اثر سرکوبگر‌های خاموشی ویروس موزائیک زرد راه راه جو (Barley yellow striate mosaic virus) بر میزان بیان ژن‌های مرتبط با اتوفاژی در گیاهNicotiana benthamiana 16c

نوع مقاله: مقاله کامل پژوهشی



اتوفاژی یک فرایند محافظت شده در یوکاریوت‌ها برای حذف اجزای سلولی آسیب دیده یا نا خواسته است. این مسیر در مقاومت به بیماری‌های گیاهی نیز دخیل می‌باشد اما مکانیزم آن دقیقا مشخص نیست. در این مطالعه تاثیر دو پروتیین سرکوبگر (:Pفسفوپروتیین و :P3پروتیین فرعی 3) متعلق به ویروس موزائیک زرد راه راه جو (BYSMV) بر بیان چهار ژن مهم دخیل در اتوفاژی شامل ATG2، ATG6، ATG7 و AGO1 در گیاه N. benthamiana مورد بررسی قرار گرفت. ژن‌های P و P3 BYSMV در ناقل pCAMBIA-1302 تحت پروموتور 2×35S و برچسبHemagglutinin در انتهای آمینی به منظور ردیابی پروتیین‌‌ها، همسانه‌سازی شدند. سازه‌ هر ژن با استفاده از اگروباکتریوم در سطح پشت برگ گیاهان N. benthamiana تزریق گردید. پنج روز پس از تزریق، میزان بیان این ژن‌ها با استفاده از پی‌سی‌آر در زمان واقعی اندازه‌گیری شد. نتایج نشان داد که هر سه تیمار(P, P3, P+P3) منجر به افزایش بیان ژن‌های ATG2، ATG6 و ATG7 گردیدند. این افزایش بیان در ژن ATG2 به ترتیب 57/5، 15/6 و 26/5 برابر در تیمار‌هایP/GFP ، P3/GFP و P/P3/GFP بود. در حالی که هر سه تیمار بر بیان ژن AGO1 اثر منفی داشتند بنحوی که بیان آن را تقریبا 5/1 برابر، نسبت به تیمار کنترل، کاهش دادند. این نتایج حاکی از نقش ژن‌های AGO1، ATG6،ATG7 و ATG2 در پاسخ دفاعی گیاه N. benthamiana در مقابل سرکوبگر BYSMV می‌باشد که می‌تواند به درک بهتر مکانیز‌م‌های دفاعی پیچیده گیاه در مقابل بیمارگر‌های ویروسی و دست یابی به روش‌های جدید کنترل ویروس‌های گیاهی کمک نماید.


عنوان مقاله [English]

Effect of RNA silencing suppressors of Barley yellow striate mosaic virus on expression levels of autophagy-related genes in Nicotiana benthamiana16c

نویسندگان [English]

  • S. Rabiee
  • A. Afsharifar
  • K. Izadpanah
چکیده [English]

Autophagy is a degradation process in eukaryotes through which damaged or unwanted intracellular components are degraded. This process is also involved in plant disease resistance, although its mechanisms are not precisely known. Autophagy is regulated by multiple autophagy-related proteins (ATGs).In this study, we investigated the possible impact of two Barley yellow striate mosaic virus (BYSMV) proteins, i.e., phosphoprotein (P) and ancillary protein 3 (P3), on four important genes involved in autophagy (ATG2, ATG6, ATG7, and AGO1) in N. benthamiana. P and P3 genes were cloned in pCAMBIA-1302 vector under the control of the 2 × 35S promoter and Hemagglutinin tag. Constructs of each gene were agroinfiltrated in the abaxial side of the N. benthamiana leaves. Five days after agroinfiltration, the expression level of these genes was measured using RT- qPCR. The results showed that expression of ATG2, ATG6 and ATG7 genes increased in all treatments (P, P3, P+P3).The level of ATG2 expression was 5.57, 15.6 and 5.6 fold, in P/GFP, P3/GFP and P/P3/GFP treatments, respectively, while a 1.5-fold reduction was obtained in expression of AGO1 in all treatments. These results implied that P and P3 proteins of BYSMV can modify the expression of autophagy related genes in N. benthamiana plant. These findings suggest the involvement of AGO1, ATG6, ATG7 and ATG2 in immune responses of N. benthamiana against BYSMV, which provide a better understanding of plant host defense mechanisms against virus infections and might be an opportunity to exploit a novel antivirus approach.

کلیدواژه‌ها [English]

  • autophagy
  • Phosphoprotein
  • RNA silencing suppressor
Almasi, R., Afsharifar, A., Niazi, A. and Izadpanah, K. (2015). Molecular characterization of glycoprotein and phosphoprotein genes of a BYSMV isolate from Iran and transmission efficiency of different isolates. Iranian Journal of Plant Pathology, 51(2).
Alvarado V. Y. and Scholthof H. B. 2012. AGO2: a new Argonautecompromising plant virus accumulation. Frontiers in Plant Science2: 112.
Andika I. B., Zheng S., Tan Z., Sun L., Kondo H., Zhou X. and Chen J. 2013. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 435(2): 493-503.
Ascencio-Ib ez J. T., Sozzani R., Lee T.J., Chu T. M., Wolfinger R. D., Cella R. and Hanley-Bowdoin L. 2008. Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiology 148(1):436-454.
Azevedo J., Garcia D., Pontier D., Ohnesorge S., Yu A., Garcia S. and Voinnet O. 2010. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes & development 24(9): 904-915.
Baumberger N. Tsai C. H., Lie M., Havecker E. and Baulcombe D. C. 2007. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Current Biology17 (18): 1609-1614.
Bejerman N., Mann K. S. and Dietzgen R. G. 2016. Alfalfa dwarf cytorhabdovirus P protein is a local and systemic RNA silencing supressor which inhibits programmed RISC activity and prevents transitive amplification of RNA silencing. Virus Research 224: 19-28.
Berryman S., Brooks E., Burman A., Hawes P., Roberts R., Netherton C. and Jackson T. 2012. FMDV induces autophagosomes during cell entry via a class III PI3K-independent pathway. Journal of virology JVI-00846.
Bologna N. G. and Voinnet O. 2014. The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annual review of plant biology65: 473-503.
Boya P., Reggiori F. and Codogno P. 2013. Emerging regulation and functions of autophagy. Nature Cell Biology 15(7): 713-720.
Cheng X, Wang A. 2016. The potyvirul silencing suppressor protein VPg mediates degradation of SGS3 via Ubiquitination and autophagy pathways. Journal of Virology 91:e01478-16. Doi: 10.1128/JVI.01478-16, PMID: 27795417.
Chiera J. M., Lindbo J. A. and Finer J. J. 2008. Quantification and extension of transient GFP expression by the co-introduction of a suppressor of silencing. Transgenic Research 17:1143-1154.
Chiu M. H. Chen I. H., Baulcombe D. C. and Tsai C. H. 2010. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Molecular plant pathology 11(5): 641-649.
Dagdas Y. F., Belhaj K., Maqbool A., Chaparro-Garcia A., Pandey P., Petre B. and Win J. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor.Elife5: e10856.
Deretic V. 2012. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Current Opinion in Immunology 24:21-31.
Derrien B., Baumberger N., Schepetilnikov M., Viotti C., De Cillia J., Ziegler-Graff V. and Genschik P2012. Degradation of the antiviral component ARGONAT1 by the autophagy pathway. Proceedings of the National Academy of Sciences 109:15942-15946.
Ding S. W. 2010. RNA-based antiviral immunity. Nature Reviews Immunology 10:632-644.
Ding S. W. and Voinnet O. 2007. Antiviral immunity directed by small RNAs. Cell 130(3): 413-426.
Dong X. and Levine B. 2013. Autophagy and viruses: adversaries or allies. Journal of innate immunity 5(5): 480-493.
Fang X. and Qi Y. 2016. RNAi in plants: an Argonaute - centered view.The Plant Cell 28(2):272-285.
Fusaro A. F., Correa R. L., Nakasugi K., Jackson C., Kawchuk L., Vaslin M. F. and Waterhouse P. M. 2012. The Enamovirus P0 protein is a silencing suppressor which inhibits local and systemic RNA silencing through AGO1 degradation. Virology 426(2): 178-187.
Giner A., Lakatos L., García-Chapa M., López-Moya J. J. and Burgyán J. 2010. Viral protein inhibits RISC activity by argonaute binding through conserved WG/GW motifs.PLoS pathogens 6(7): e1000996.
Hafrén A., Macia J. L., Love A. J., Milner J. J., Drucker M. and Hofius D. 2017. Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proceedings of the National Academy of Sciences 114(10): E2026-E2035.
Hammer Ø., Harper D. AT. and Ryan P. D., 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.
Havelda Z., Várallyay. V l czi A. and Burgyán J. 2008. Plant virus infection induced persistent host gene downregulation in systemically infected leaves. The Plant Journal 55:278-288.
Haxim Y., Ismayil A., Jia Q., WangY. Zheng X., Chen T. and Cheng, J. 2017. Autophagy functions as an antiviral mechanism against geminiviruses in plants. Elife 6: e23897.
Izadpanah K., Ebrahim‐Nesbat F. and Afsharifar A. R. 1991. Barley yellow striate mosaic virus as the cause of a major disease of wheat and millet in Iran. Journal of Phytopathology 131(4): 290-296.
Jackson A. O., Dietzgen R. G., Goodin M. M., Bragg J. N. and Deng M. 2005. Biology of Plant Rhabdoviruses. Annual Review of Phytopathology 43: 623-660.
Johansen L. K. and Carrington J. C. 2001. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium - mediated transient expression system. Plant physiology 126(3): 930-938.
Judith D., Mostowy S., Bourai M., Gangneux N., Lelek M., Lucas‐Hourani M. and Tangy F. 2013. Species‐specific impact of the autophagy machinery on Chikungunya virus infection.The European Molecular Biology Organization journal14(6): 534-544.
Kabbage M., Williams B. and Dickman M. B. 2013. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoSpathogens 9 (4): e1003287.
Klionsky D. J. and Codogno P. 2013. The mechanism and physiological function of macroautophagy. Journal of innate immunity 5(5): 427-433.
Lamb C. A., Yoshimori T. and Tooze S. A. 2013. The autophagosome: origins unknown, biogenesis complex. Nature reviews Molecular cell biology 14(12): 759.
Levine B., Mizushima N. and Virgin H. W. 2011. Autophagy in immunity and inflammation. Nature 469:323-335.
Liu F., Grundke I., Iqbal K. and Gong C. X. 2005. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. European Journal of Neuroscience 22(8): 1942-1950.
Liu, L., Chung, H. Y., Lacatus, G., Baliji, S., Ruan, J., & Sunter, G. (2014). Altered expression of Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC plant biology, 14(1), 302.
Liu Y. and Bassham D. C. 2012. Autophagy: pathways for self-eating in plant cells. Annual Review of Plant Biology 63:215-237.
Liu Y., Schiff M., Czymmek K., Tallóczy Z., Levine B.and Dinesh-Kumar S. P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4): 567-577.
Livak K. J. and Schmittgen T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCoR and the 2− ΔΔCT method. Methods 25(4): 402-408.
Mandadi K. K. and Scholthof K. B. G. 2013. Plant immune responses against viruses: how does a virus cause disease?.The plant cell25(5): 1489-1505.
Mann K. S., Johnson K. N., Carroll B. J. and Dietzgen R. G. 2016. Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virolog490: 27-40.
Milne R. G. and Conti M. 1986. Barley yellow striate mosaic virus. AAB Descriptions of Plant Viruses (312).
Miozzi L., Napoli C., Sardo L. and Accotto G. P. 2014. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection. PLoS One 9(2): e89951.
Mizushima N., Yoshimori T. and Ohsumi Y. 2011. The role of Atg proteins in autophagosome formation. Annual review of cell and developmental biology27: 107-132.
Nakahara K. S., Masuta C., Yamada S., Shimura H., Kashihara Y., Wada T. S. and Sekiguchi T. 2012. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proceedings of the National Academy of Sciences 109:10113-10118.
Paul P, Münz C. 2016. Autophagy and mammalian viruses: roles in immune response, viral replication, and beyond. Advances in Virus Research 95:149–195. Doi: 10.1016/bs.aivir.2016.02.002, PMID: 27112282.
 Philips J. G., Naim F., Lorenc M. T., Dudley K. J., Hellens R. P. and Waterhouse P. M. 2017. The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence. PloS one 12(2): e0171311.
Rivas F. V., Tolia N. H., Song J. J., Aragon J. P., Liu J., Hannon G. J. and Joshua-Tor L. 2005. Purified Argonaute2 and a siRNA form recombinant human RISC. Nature structural & molecular biology 12(4): 340.
Roth B. M., Pruss G. J and Vance V. B. 2004. Plant viral suppressors of RNA silencing.Virus research102(1): 97-108.
Schott G., Mari-Ordonez A., HimberC., Alioua A., Voinnet O., Dunoyer P. 2012.Differential effects of viral silencing suppressors on siRNA and miRNA loading supportthe existence of two distinct cellular pools of ARGONAUTE1. The European Molecular Biology Organization journal 31:2553–2565
Senshu H., Ozeki J., Komatsu K., Hashimoto M., Hatada K., Aoyama M. and Namba S. 2009. Variability in the level of RNA silencing suppression caused by triple gene block protein 1 (TGBp1) from various potexviruses during infection. Journal of general virology 90(4): 1014-1024
Senshu H., Yamaji Y., Minato N., Shiraishi T., Maejima K., Hashimto M. and Namba S. 2011. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. Journal of virology JVI-05273.
Shelly S., Lukinova N., Bambina S., Berman A. and Cherry S. 2009. Autophagy is an essential component of Drosophila immunity against vesicular stomatitis virus.Immunity 30(4): 588-598.
Shoji-Kawata S. and Levine B. 2009. Autophagy, antiviral immunity, and viral countermeasures. Biochimica ET Biophysica Acta (BBA)-Molecular Cell Research 1793:1478-1484.
Tadamura K., Nakahara K. S., Masut C. and Uyeda I. 2012 Wound-induced rgs-CaM gets ready for counterresponse to an early stage of viral infection. Plant Signaling and Behavior 7:1548 1551.
Tahmasebi A., Afsharifar A., Rabiee S. and Izadpanah K. 2017. Altered expression of autophagy-related genes in Nicotiana benthamiana plants in response to Potato virus A HC-Pro silencing suppressor. Iranian Journal of Plant Pathology 53(1)Pages?
Voinnet O., Rivas S., Mestre P. and Baulcombe D. 2003. Retracted: an enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal 33(5): 949-956.
Walker P., Dietzgen R., Joubert D. and Blasdell K. 2011. Rhabdovirus accessory genes. Virus Research 162:110–125.
Walker P. J., Blasdell K. R., Calisher C. H., Dietzgen R. G., Kondo H., Kurath G., Longdon B., Stone D. M., Tesh R. B., Tordo N., Vasilakis N., Whitfield A. E. and ICTV Report Consortium. 2018, ICTV Virus Taxonomy Profile: Rhabdoviridae. Journal of General Virology 99:447–448.
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis (2011). ATG2, an autophagy‐related protein, negatively affects powdery mildew resistance and mildew‐induced cell death in Arabidopsis. The Plant Journal. 68: 74–87.
Lan-Lan W., Xin-Ru W., Xue-Mei W., Huang H., Jian-Xiang W., Xue-Xin C., Shu-Sheng L. and Xiao-Wei Wang. 2016. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies, Autophagy, 12(9): 1560-1574.
Yan T., Zhu J. R., Di D., Gao Q., Zhang Y., Zhang A. and Wang, X. B. 2015. Characterization of the complete genome of Barley yellow striate mosaic virus reveals a nested gene encoding a small hydrophobic protein.Virology 478: 112-122.
Yang Z. and Klionsky D. J. 2010. Mammalian autophagy: core molecular machinery and signaling regulation.Current opinion in cell biology 22(2): 124-131.
Brian Y., Michal C. T., Kachiko Hayashi, O. A., Akiko I. 2013. Autophagy and selective deployment of Atg proteins in antiviral defense, International Immunology, Volume 25.
Zhang X., Yuan Y. R., Pei Y., Lin S. S., Tuschl T., Patel D. J. and Chua N. H. 2006. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes & development 20(23): 3255-3268.
Zhou T., Murphy A. M., Lewsey M. G., Westwood J. H., Zhang H. M., Gonzalez I. and Carr J. P. 2014. Domains of the cucumber mosaic virus 2b silencing suppressor protein affecting inhibition of salicylic acid-induced resistance and priming of salicylic acid accumulation during infection. Journal of General Virology 95:1408-1413.