خصوصیات مولکولی، سرولوژیکی و بیولوژیکی دو فیتوپلاسمای متعلق به زیر گروه C درگروه آران ای ریبوزومی 16SrII همراه با بیماری جاروک یونجه در استان های یزد و فارس

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 استادیار بیماری شناسی گیاهی بخش تحقیقات گیاه پزشکی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان یزد، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

2 استاد بیماری شناسی گیاهی دانشگاه بوعلی سینا همدان، ایران.

3 دانشیار بیماری شناسی گیاهی بخش تحقیقات گیاه پزشکی مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان فارس، سازمان تحقیقات، آموزش و ترویج کشاورزی، زرقان، ایران

4 -

چکیده

جاروک یونجه یک فاکتور محدود کننده ی رشد و تولید یونجه در ایران به ویژه در مناطق گرمسیری می باشد. استرین های فیتوپلاسمای همراه با بیماری جاروک یونجه در دو منطقه شدیدا" آلوده ی چاهگیر (استان یزد) و جویم (استان فارس) از نظر خصوصیات بیولوژیکی، سرولوژیکی و مولکولی مقایسه شدند. بر اساس علایم بیماری در مزارع یونجه جاروک یونجه چاهگیر و جویم قابل تفکیک نبودند. در پروانش و گوجه مایه زنی شده، فیتوپلاسمای جاروک یونجه جویم ریزبرگی بیشتری در مقایسه با فیتوپلاسمای جاروک یونجه چاهگیر ایجاد کرد. از بین زنجرک هایی که قبلا به عنوان ناقل بیماری جاروک یونجه گزارش شده بودند، فیتوپلاسمای جاروک یونجه جویم فقط با گونه Orosius albicinctus و فیتوپلاسمای جاروک یونجه چاهگیر فقط با گونه Circulifer haematoceps انتقال داده شد. بر اساس توالی ژن آر ان ای ریبوزومی 16S و ناحیه ی بین ژنی 16S-23S، جاروک یونجه جویم و چاهگیر قابل تفکیک نبودند، اگرچه ارتباط سرولوژیکی بین دو فیتوپلاسما در آزمون های الایزا و دیبا با استفاده از آنتی بادی های چند همسانه ای تولید شده بر علیه دو فیتوپلاسما مشاهده نشد. به دلیل تفاوت در ناقل،  فقدان ارتباط سرولوژیکی و ایجاد علایم متفاوت در پروانش و گوجه فرنگی، فیتوپلاسما های جاروک یونجه چاهگیر و جویم دو استرین متفاوت از  زیر گروه C در گروه آران ای ریبوزومی16SrII  می باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Biological, serological and molecular characteristics of two 16SrII-C-related phytoplasma strains associated with alfalfa witches’ broom disease in Yazd and Fars provinces, Iran

نویسندگان [English]

  • S.A. Esmailzadeh Hosseini 1
  • G. Khodakaramian 2
  • M. Salehi 3
  • A. Bertaccini 4
1 Aassistant Professor of Plant Pathology, Plant Protection Research Department, Yazd Agricultural and Natural Re-sources Research and Education Center, AREEO, Yazd, Iran
2 Professor of Plant Pathology, Plant Protection Department, Bu-Ali Sina University, Hamedan, Iran
3 Associate Professor of Plant Pathology, Plant Protection Research Department, Fars Agricultural and Natural Re-sources Research and Education Center, AREEO, Zarghan, Iran
4 Professor of Plant Pathology, Department of Agricultural Sciences, Plant Pathology, Alma Mater Studiorum, Univer-sity of Bologna, Italy
چکیده [English]

Alfalfa witches’ broom (AWB) is a limiting factor for alfalfa growth and production in Iran, especially in the tropical regions of the country. AWB phytoplasma strains from two severely affected areas, Chahgeer (Abarkooh, Yazd province) and Juyom (Larestan, Fars province), were compared for main biologic, serologic and molecular characteristics. Based on disease symptoms in alfalfa farms, Chahgeer and Juyom AWB (CAWB and JAWB, respectively) strains were not differentiable. In dodder inoculated periwinkle and tomato plants JAWB phytoplasma induced stronger little leaf compared to the one induced by CAWB phytoplasma. In these experiments the two JAWB and CAWB phytoplasma strains are confirmed as vectored by different leafhopper species, Orosius albicinctus and Circulifer haematoceps respectively. Based on 16S rRNA gene and 16S-23S intergenic spacer region sequences, CAWB and JAWB were not differentiable, however no serologic relationship was observed between the two phytoplasmas in ELISA and DIBA tests using polyclonal antibodies prepared against each of them. Due to the lack of serological relationship, different insect vectors and induction of different symptoms in common host plants, CAWB and JAWB phytoplasmas should be considered as two different AWB strains both belonging to 16SrII-C subgroup.
 

کلیدواژه‌ها [English]

  • DIBA
  • ELISA
  • PCR
  • RFLP
  • serology
Al-Saleh M.A., Amer M.A., Al-Shahwan I.M., Abdalla O.A. and Damiri B.V. 2014. Detection and molecular characterization of alfalfa witches' broom phytoplasma and its leafhopper vector in Riyadh Region of Saudi Arabia. Int J Agric Biol 16:300-306.
Bertaccini A., Duduk B., Paltrinieri S. and Contaldo N. 2014. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Pl Sci 5:1763-1788.

Clark M.F. and Adams A.N. 1977. Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34(3):475-483.

Conci L., Meneguzzi N., Galdeano E., Torres L., Nome C. and Nome S. 2005. Detection and molecular characterization of an alfalfa phytoplasma in Argentina that represents a new subgroup in the 16Sr RNA ash yellows group (‘Candidatus Phytoplasma fraxini’). Eur J Pl Pathol 113:255-265.
Deng S.J. and Hiruki C. 1991. Amplification of 16S ribosomal RNA genes from culturable and nonculturable mollicutes. J Microbiol Meth 14:53–61.
Doyle J.J. and Doyle J.I. 1990. Isolation of DNA from fresh plant tissue. Focus 12: 13–15.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Fani S.R., Bolok Yazdi H. R., Raoufi D., Jadidi, O. and Bertaccini A. 2015a. Status of alfalfa witches’ broom phytoplasma disease in Iran. Phytopath Moll 5(1-Suppl):65-66.
Esmailzadeh Hosseini S.A., Salehi M., Khodakaramian G., Mirchenari S.M. and Bertaccini A. 2015b. An up to date status of alfalfa witches’ broom disease in Iran. Phytopath Moll 5(1):9-18.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M., Fani S.R., Mirchenari S.M., Salehi E. and Bertaccini A. 2015c. Incidence, distribution and economic importance of alfalfa witches’ broom disease in Sistan-Baluchestan (Iran) and characterization of associated phytoplasma. Phytopath Moll 5(2):84-90.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M. and Bertaccini A. 2016a. Characterization of 16SrII group phytoplasmas associated with alfalfa (Medicago sativa) witches’ broom disease in diverse areas of Iran. J Crop Prot 5 (4): 581-590.
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M. and Bertaccini, A. 2016b. First report of 16SrVI-A and 16SrXII-A phytopplasmas associated with alfalfa witches’ broom diseases in Iran. J Plant Pathol 98 (2): 369. 
Esmailzadeh Hosseini S.A., Khodakaramian G., Salehi M. and Bertaccini, A. 2016c. Molecular identification and phylogenetic analysis of phytoplasmas associated with alfalfa witches’ broom diseases in the western areas of Iran. Phytopath Moll 6(1): 16-22. 
Getachew M.A., Mitchell A., Gurr G.M., Fletcher M.J., Pilkington L.J., Nikandrow A. and Elliott E. 2007. First report of a ‘Candidatus Phytoplasma australiense’-related strain in lucerne (Medicago sativa) in Australia. Pl Dis 111:91.
Gundersen D.E. and Lee I-M. 1996. Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopath Medit 35:114–151.
Hibi T. and Saito Y. 1985. A dot immunobinding assay for the detection of tobacco mosaic virus in infected tissues. J Gen Virol 66:1991-1994.
IRPCM, 2004. ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 54:1243–1255.
Jomantiene R., Davis R.E., Antoniuk L. and Staniulis J. 2000. First report of a phytoplasma in soybean, alfalfa and Lupinus sp. in Lithuania. Pl Dis 84: 198-199.
Jones P., Arocha Y. and Plata G. 2005. First report of ‘Candidatus Phytoplasma asteris’ associated isolate with witches’ broom disease of alfalfa in Bolivia. Pl Pathol 54:559.
Khan A.J., Azam K.M., Deadman M.L., Al-Subhi A.M. and Jones P. 2001. First report of alfalfa witches’ broom disease in Oman caused by a phytoplasma of the 16SrII group. Pl Dis 85:1287.
Khan A.J., Botti S., Al-Subhi A.M., Gundersen-Rindal D.E. and Bertaccini A. 2002. Molecular identification of a new phytoplasma associated with alfalfa witches’ broom in Oman. Phytopathology 92:1038-1047.
Lee I-M., Gundersen D.E., Hammond R.W., Davis R.E. and Bartoszyk I.M. 1998. Revised classification scheme for phytoplasma based on RFLP analysis of 16S rRNA and ribosomal protein gene sequences. Int J Syst Bacteriol 48:1153-1169.
Li Z-N., Zhang L., Man J-Y. and Wu Y-F. 2012. Detection and identification of elm yellows group phytoplasma (16SrV) associated with alfalfa witches’ broom disease. J Phytopathol 160:311-313.
Marzachì C., Veratti F., d’Aquilio M., Vischi A., Conti M. And Boccardo G. 2000. Molecular hybridization and PCR amplification of nonribosomal DNA to detect and differentiate stolbur phytoplasma isolates from Italy. J Pl Pathol 82:201-212.
Peters R.D., Lee M.E., Grau C.R., Driscoll S.J., Winberg R.M. and Kutzweil NC. 1999. First report of aster yellows phytoplasma in alfalfa. Pl Dis 83:488.
Salehi M., Heydarnejad J. and Izadpanah K. 2005. Molecular characterization and grouping of 35 phytoplasmas from central and southern provinces of Iran. Iranian J Pl Pathol 41:62–64.
Salehi M. and Izadpanah K. 1993. Etiology of alfalfa witches’ broom disease in Iran. Iranian J Pl Pathol29:92-93.
Salehi M., Izadpanah K. and Ebrahimnesbat F. 1995. Etiology, transmission and host range of alfalfa witches’ broom in Iran. Iranian J Pl Pathol 31(1-4):1-9.
Salehi M., Izadpanah K., Siampour M., Bagheri A. and Faghihi S.M. 2007. Transmission of ‘Candidatus Phytoplasma aurantifolia’ to Bakraee (Citrus reticulata Hybrid) by feral Hishimonus phycitis leafhoppers in Iran. Pl Dis 91(4):466.
Salehi M., Izadpanah K., Siampour M. and Esmailzadeh Hosseini S.A. 2011. Polyclonal antibodies for the detection and identification of Fars alfalfa witches’ broom phytoplasma. Bull Insectol 64(Supplement):59-60.
Schneider B., Seemüller E., Smart C.D. and Kirkpatrick B.C. 1995. Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In S. Razin & J. G. Tully (Eds.), Molecular and diagnostic procedures in mycoplasmology (pp. 369–380). San Diego, CA: Academic.
Starović M., Kuzmanović S., Gavrilović V., Aleksić G., Popović T., Stojanović S. and Jošić D. 2012. Detection and identification of two phytoplasmas (16SrIII-B and 16SrXII-A) from alfalfa (Medicago sativa) in Serbia. J Phytopathol 160:758-760.
Sutula C.L., Gillett J.M., Morrissey S.M. and Ramsdell D.C. 1986. Interpreting ELISA data and establishing the positive-negative threshold. Pl Dis 70:722-726.
Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725-2729. 
Zhang Y.P., Uyemoto J.K. and Kirkpatrick B.C. 1998. A small-scale procedure for extracting nucleic acids from woody plants infected with various phytoplasmas for PCR assay. J Virol Meth 71:45-50.
Zhao Y., Wei W., Lee M., Shao J., Suo X. and Davis R.E. 2009. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol 59:2582-2593.