مهار گل‌جالیز (Orobanche cernua) روی گوجه‌فرنگی با استفاده از بنزوتیادیازول و بررسی تغییرات آنزیمی آن

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد بیماری شناسی گیاهی، دانشکده کشاورزی، دانشگاه جیرفت.

2 عضو هیات علمی بخش گیاهپزشکی دانشکده کشاورزی- دانشگاه جیرفت

3 مربی گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه جیرفت

4 دانش‌آموخته کارشناسی ارشد گیاه‌شناسی، دانشگاه شهید باهنر کرمان

چکیده

گل‌جالیز (Orobanche spp.) انگل مطلق ریشه گیاهان دولپه و دارای خسارت فراوان می‌باشد. بنزوتیادیازول به‌عنوان ماده محرک، پتانسیل القای مقاومت در برخی گیاهان را دارد. در این پژوهش، تأثیر غلظت‌های مختلف BTH (10، 100 و 500 میلی‌گرم در لیتر) در القای مقاومت در گیاه گوجه‌فرنگی در برابر گل‌جالیز  Loefl Orobanche cernua موردمطالعه قرار گرفت. ابتدا حساسیت هفت رقم نسبت به بیمارگر ارزیابی شد. دو رقم ارلی‌اربانا و سوپرچف به ترتیب به‌عنوان متحمل‌ترین و حساس‌ترین ارقام جهت آزمایش  گلخانه‌ای بعدی انتخاب شدند. نشاءها قبل از انتقال به گلدان‌های حاوی 20 میلی‌گرم بذر گل جالیز، به مدت یک ساعت در غلظت‌های مختلف BTH خیسانده و همچنین 15 روز بعد، مجدداً آبیاری شدند. پس از سه ماه، شاخص‌های رشدی میزبان و بیمارگر بررسی و اندازه‌گیری شد. نتایج نشان داد که رقم متحمل و تمامی غلظت‌های BTH در مهار بیمارگر مؤثر بودند. غلظت mg/l100 و 500 در رقم ارلی‌اربانا مهار صددرصدی بیمارگر را دربر داشت. همچنین تغییرات فعالیت آنزیم فنیل‌آلانین‌آمونیالیاز و پراکسیداز در زمان‌های 24، 48، 72 و 96 ساعت بعد از کاربرد BTH موردبررسی قرار گرفت. بر اساس نتایج، بیشترین فعالیت آنزیمی در رقم ارلی‌اربانا در غلظت mg/l 500 در حضور گل‌جالیز حاصل شد. درمجموع، استفاده از ترکیبات تجاری BTH به‌عنوان یک فعال‌کننده سیستم دفاعی گیاه و یک ترکیب جدید، ساده و سازگاربامحیط‌زیست می‌تواند جهت مهار گل‌جالیز در کشاورزی پایدار بکار رود.

کلیدواژه‌ها


عنوان مقاله [English]

Suppression of Orobanche cernua on tomato with Benzothiadiazole and its enzymatic changes

نویسندگان [English]

  • F. Ghalavand 1
  • Zabihollah Azami-Sardooei 2
  • F. Fekrat 3
  • M. Payandeh 4
2 Academic Member of University of Jiroft
چکیده [English]

Benzothiadiazole (BTH) is as an elicitorwith potential to induction of resistance in some plants. In this research, the effect of different concentrations of BTH (0, 10, 100, 500 mg/ l) for induction of resistance in tomato against Orobanche cernua Loeflwas investigated. For following experiment in greenhouse condition, Early Urbana(EU) and Super Chef respectively the most tolerant and sensitive cultivars were selected. Before transplanting of tomato into contaminated pots with 20 mg broomrape seeds, the roots of plant were soaked in BTH for an hour. Also fifteen days later, the seedlings were irrigated with BTH. Growth parameters of tomato plants and pathogen were assessed 3 months later. The results demonstrated that all concentrations of BTH and tolerance variety were effective in inhibition of pathogen. The best broomrape controls were recorded by 100 percent at 100 and 500 mg/l on EU cultivar. The activity of the enzyme phenylalanine ammonia lyase (PAL) and peroxidase (POX) at 24, 48, 72 and 96 hours were estimated after irrigated plants with BTH. The results showed that there was a significant effect of the concentrations of BTH and pathogen on the activity of PAL and POX enzymes that are involved in plant defense mechanisms. The highest enzymatic activity was obtained in EU at concentration of 500 mg/l in the presence of O. cernua. In conclusions, the use of BTH commercial compounds as plant defense activator is a new, simple strategy to control broomrape and compatible with the environment for the sustainable agriculture

کلیدواژه‌ها [English]

  • BTH
  • Control
  • Enzyme
  • Orobanche
  • Tomato

 

Aalders A.J.G. and Pieters R. 1987. Resistance in Vicia faba to Orobanche crenata: True resistance versus hidden susceptibility. Euphytica 36(1): 227-236.

 

Abdel-monaim M.F., Ismail M.E. and Morsy K.M. 2011. Induction of systemic in soybean plants against Fusarium wilt disease by seed treatment with benzothiadiazole and humic acid. Microbiology 39(4): 290-298.

 

Abo-Elyousr K.A. and El-Hendawy H.H.2008. Integration of Pseudomonas fluorescens and acibenzolar-S-methyl to control bacterial spot disease of tomato. Crop protection 27(7): 1118-1124.

Al-Wakeel S., Moubasher H., Gabr M. and Madany M.M.Y. 2013. Induced systemic resistance: an innovative control method to manage branched broomrape (Orobanche ramosa L.) in tomato. IUFS Journal of Biology 72: 9-21.

Azami-Sardooei Z., Seifi H.S., De Vleesschauwer D. and Höfte M. 2013. Benzothiadiazole (BTH)-induced resistance against Botrytis cinerea is inversely correlated with vegetative and generative growth in bean and cucumber, but not in tomato. Australasian Plant Pathology 42(4): 485-490.

Azami-Sardooei Z., Fekrat F. and Ghelavand F. 2017. A review of the application of Benzothiadiazole in management control of plant diseases. Plant Pathology Science. Accepted for publication.

Bagal U.R., Leebens mack J.H., Walter Lorenz W. and Dean J.F.D. 2012. The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm specific line age. BMC Genoms 13(3): 1471-2164.

 

Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem 72: 248- 254.

 

Castejon-Munoz M., Romero- Munoz F. and Garcia- Torres L. 1993. Effect of planting date on broomrap (Orobanche cernua Loeft.) infections in sunflower (Helianthus annuus L.) Weed Research 33: 171- 176.

 

Chandra A., Saxena R., Dubey A. and Saxena P. 2007. Change in phenylalanine ammonia lyase activity and isozyme patterns of polyphenol oxidase and peroxidase by salicylic acid leading to enhanced resistance in cowpea against Rhizoctonia Solani. Acta Physiologiae Plantarum 29: 361–367.

 

Chen C., Zheng Z., Huang J., Lai Z. and Fan B. 2009. Biosynthesis of salicylic acid in plants. Plant Signaling. Behavior4: 493-496.

Dorr I., Staack A. and Kollmann R. 1994. Resistance of Helianthus to Orobanche-histological and cytological studies. In: A.H. Pieterse J.A.C Verkleij & S.J. ter Borg )Eds.(, Proceedings of the 3rd International Workshop on Orobanche and Related Striga Research. Amsterdam: Royal Tropical Institute 276–289.

 

Elmer W.H. 2006. Effect of acibenzolar-S-methyl on the suppression of Fusarium wilt of cyclamen. Crop Protection 25: 671–676.

Eizenberg H., Lande T., Achdari G., Roichman A. and Hershenhorn J. 2007. Effect of Egyptian broomrape (Orobanche aegyptiaca) seed-burial depth on parasitism dynamics and chemical control in tomato. Weed Sciences 55: 152-156.

Fan Z., Buschmann W. and Sauerborn H. J. 2003. The efficacy of resistance inducing agents for the control of sunflower broomrape (Orobanche cumana Wallr.). Deutscher Tropentag. University Gottingen 11-19.

Goellner K., and Conrath U. 2008. Priming: it’s all the world to induced disease resistance. European Journal of Plant Pathology 121(3): 233-242.

Goldwasser Y., Plakhine D., Kleifeld Y., Zamski E. and Rubin B. 2000. The Differential susceptibility of vetch (Vicia spp.) to Orobanche aegyptiaca: Anatomical Studies Annal of Botany 85: 257-262.

Gonsior G., Buschmann H., Szinicz O., Spring G. and Sauerborn J. 2004. Induced resistance-an innovative approach to manage branched broomrape (Orobanche ramosa) in hemp and tobacco. Weed. Sciences 52: 1050-1053.

 

Hadizadeh M.H. 2012. Broomrape: identification and control. InstitutePlant Protection Research. Tehran, Iran.

 

Haidar M. A., Bibi W. and Abdel- Khalek N. 1995. Effect of wheat and barley residues on branched broomrape (Orobanche ramose) growth and development in potatoes. Brighton crop Protection Conference-Weed 3:871-876.

 

Hislop E.C. and Stahmann M.A. 1971. Peroxidase and ethylene production by barley leaves infected with Erysiphe graminis f. sp. hordei. Physiological Plant Pathology, 1(3): 297-312

Joel D.M., Hershenhorn J., Eizenberg H., Aly R., Ejeta G., Rich P. J. 2007. Biology and management of weedy root parasites. Horticultural Reviews. 33: 267–349.

Kerby K. and Somerville S. 1989. Enhancement of specific intercellular peroxidases following inoculation of barley with Erysiphe graminis f. sp. hordei. Physiological and Molecular Plant Pathology 35(4): 323-337.

 

Kusumoto D., Goldwasser Y., Xie X., Yoneyama K., Takeuchi Y. and Yoneyama K. 2007. Resistance of red clover (Trifolium pretense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Annals of Botany 100: 537- 544.

Kar M., and Mishra D. 1976. Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiology 57: 315-320.

 

Lawton K., Friedrich L., Hunt M., Weymann K., Delaney I., Kessmann H., Staub T and Ryals J.1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant Pathology 10: 71-82.

 

Lu H. 2009. Dissection of salicylic acid-mediated defense signaling networks. Plant Signaling and Behavior 4:713-717.

Macko V.W., Woodbury E. and Stahmann M.A. 1968. The effect of peroxidase on the germination and growth of mycelium of Puccinia graminis f. sp. tritici. Phytopathology 58: 1250-1254.

Mariam E. G. and Suwanketnikom R. 2004. Screening of tomato (Lycopersicon esculentum Mill.) varieties for resistance to branched broomrape (Orobanche ramosa L.). Kasetsart. Journal of Natural Sciences 38: 434-439

 

Meighan F., Yazdani M. & Minbashi M. 2009. Study of tomato (Lycopersicon escolentom) cultivars tolerance to broomrape (Orobanche aegyptiaca).Journal of applied entomology and phytopathology 77: 93-111 (In Persian)

Mohammadi M. & Kazemi H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium  graminearum and  induced resistance. Plant Science 162:491-498.

Moreschbacher B.M. 1992. Involvment in response to phatogens. Plant Peroxidase. University of Geneva Pp.1980-1990.

Moreau R.A. and Osman S.F. 1989. The properties of reducing agents released by treatment of Solanum tuberosum with elicitors from Phytophthora infestans. Physiological and molecular plant pathology 35(1): 1-10.

 

Mandal S. and Mitra A. 2007. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiological and molecular plant pathology 35(4): 323-337.

 

Nezamabadi  H.,  Rahimian  E.,  Zand  H.,  Alizadeh  M. and Naghavi  M. R. 2013.

Investigating broomrape (Orobanche aegyptiaca) populations diversity in response to

herbicides  and  banzotiadiazol  in  tomato  (Lycopersicum  esculentum). Applied

Entomology and Phytopathology 80(2): 103-118.

 

Parr A.J. and Bolwell G.P. 2000. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. Journal of Science Food Agriculture 80: 985-1012.

 

Patykowski Y., Urbanek A. and Kaczorowska T. 1988. Peroxidase in leaves of wheat cultivars differing in resistance to  Erysiphe graminis DC. Journal of in Phytopathology 122: 126-134.

Pérez-de-Luque A., Jorrín J.V. and Rubiales D. 2004. Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica 32: 21–29.

Reuveni R. 1995. Biochemical markers for disease resistance. Molecular Methods in Plant Pathology 99-114.

Rispail N., Dita M.A., González-Verdejo C.I., PérezDe-Luque A., Castillejo M.A., Prats E., Román B. Jorrín J. and Rubiales D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytology 173: 703–712.

Robb J., Powell D.A. and Street P.F.S. 1987. Time course of wall-coating secretion in Verticillium infected tomatoes. Physiological and molecular plant pathology 31: 217-226.

 

Solecka D. and Kacperska A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiologia Plantarum 119: 253–262.

 

Sauerborn J., Buschmann H., Ghiasi K.G. and Kogel K.H. 2002. Benzothiadiazole activates resistance in sunflower (Helianthus annuus) to the root-parasitic weed Orobanche cuman. Phytopathology 92: 59-64.

Shimi P. and Termeh, F. 2004. Weeds of Iran. Plant Pests & Diseases Research Institute. Tehran.154 p. (in Persian).

 

Thalouarn P., Labrousse P. and Berville A. 2006. The resistance mechanism of mutagenised tomato line resistant to Orobanche spp. Workshop Parasite Plant Management in Sustainable Agriculture, Final Meeting of Cost 849, 23-24 November, ITQ13 Deiras-Lisbon, Portugal: Perez-de-Luque A., 34-35.

 

Tokasi S., Bannayan Aval M., Mashhadi H.R. and Ghanbari A. 2014. Screening of resistance to egyptian broomrape infection in tomato varieties. Planta Daninha32: 109-116.

Tokasi S., Banaeian Aval M. and Ghanbari A. 2015. The difference in response to the infection of Egyptian broomrape on tomato varieties. Journal of plant protection (Agricultural Sciences and Technology) 28(3): 425-428 (in Persian).

 

Tsuge S., Ochiai H., Inoue Y., Ohu T., Tsuno K., Kaku K. and Kubo Y. 2004. Phosphoglucose isomerase in pathogenicity of Xanthomonas oryzae pv. oryzae. Phytopathology 94: 478–483.

 

Veronesi Ch., Delavault Ph. and Simier Ph. 2009. Acibenzolar-S-methyl induced resistance in oilseed rape (Brassica napus L.) against branched broomrape (Orobanche ramose L.). Crop Protection 28: 104-108.

 

Vlot A., Dempse D. A. and Klessig D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Reviw. Phytopathology 47: 177-206.

 

Vicent M.R.S. and Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development.  Journal of Experimental Botany 62:3321-3338.

 

Wang D., Pajerowska-Mukhtar K., Hendrickson Culler A. and Dong X. 2007. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17: 1784-1790.

 

Yashimoto K., Jikumaru Y., Kamiya Y., Kusano M., Consonni C., Panstruga R., Ohsumi Y. and Shirasu K. 2009.Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. The Plant Cell 21: 2914-2927.