استفاده از ژن پرآزاری سیرینگومایسین در گروه‌بندی جدایه‌هایPseudomonas syringae pv. syringae عامل شانکر درختان زردآلو و بادام

نوع مقاله: مقاله کامل پژوهشی

نویسندگان

1 دانشجوی دکتری پروکاریوت‌های بیماری‌زای گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تبریز، ایران

2 دانشیار گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه تبریز، ایران.

3 استادیار مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی هرمزگان، ایران

4 پروفسور گروه علوم بیماری‌شناسی گیاهی، فیزیولوژی و علف‌های هرز دانشکده کشاورزی و علوم زیستی، دانشگاه ویرجینیاتک، آمریکا.

چکیده

در سال­های اخیر با توجه به گسترش بیماری شانکر درختان زردآلو و بادام مشکوک به آلودگی با عامل Pseudomonas syringae pv. syringae (Pss) در استان آذربایجان­شرقی، جهت ردیابی و شناسایی برخی از خصوصیات فنوتیپی و ژنوتیپی جدایه­های بیمارگر Pss، نمونه­برداری از 13 منطقه مختلف جغرافیایی استان انجام شد. از نمونه­های مشکوک با علایم ظاهری شانکر، تعداد 14 جدایه باکتری گرم منفی و تولیدکننده رنگدانه فلورسنت، بر اساس آزمون­های بیوشیمیایی و افتراقی LOPAT و GATTa به عنوان Pss شناسایی شدند. جدایه­ها اختلاف بسیار جزیی در آزمون­های مورفولوژیکی، بیوشیمیایی و فیزیولوژیکی نشان دادند. تعیین ترادف بخشی از ناحیه ژنی rpoD، نتایج آزمون­های مورفولوژیکی و فنوتیپی را تایید نمود. جدایه­ها تفاوت معنی­داری در مهار رشد رویشی پرگنه قارچ Geotrichum candidum با تولید زهرابه داشتند. در تمامی جدایه­های Pss قطعه 725 جفت­بازی ژن syrB دخیل در سنتز زهرابه سیرینگومایسین ردیابی گردید. جدایه­ها بر اساس آزمون بیماری­زایی روی سرشاخه­های بریده زردآلو به دو گروه پرآزار و کم­آزار تقسیم شدند. تعیین ترادف بخشی از ژن syrB و رسم تبارنما با روش بایزین نشان داد که در میان ده جدایه مورد بررسی تنوع ژنتیکی وجود داشته و جدایه­ها به دو گروه کاملا متمایز تقسیم شدند. گروه­بندی حاصله با گروه­بندی به­دست آمده بر اساس تعیین ترادف بخشی از ژن خانه­دار rpoD مشابهت داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Virulence-related syringomycin gene in grouping of Pseudomonas syringae pv. syringae strains, the causal agent of canker on apricot and almond trees

نویسندگان [English]

  • Y. Vasebi 1
  • R. Khakvar 2
  • M.M. Faghihi 3
  • B. Vinatzer 4
چکیده [English]

In recent years, due to the increase in canker symptoms on almond and apricot trees suspected to Pseudomonas syringae pv. syringae (Pss) strains in East Azerbaijan province, detection and determination of some phenotypic characters and genetic characterizations of Pss strains were performed after sampling from 13 different geographical regions. A total of 14 Gram negative and fluorescent producing bacterial strains isolated from apparently diseased samples were identified as Pss based on biochemical and differential LOPAT and GATTa tests. Strains showed slight differentiation in morphological, biochemical and physiological tests. Partial sequences of the rpoD gene confirmed the results of the morphological and phenotypical tests. Pss strains had significant differences in regard to inhibition of Geotrichum candidum mycelial growth by toxin production. A 725-bp fragment of the syrB gene required for synthesisof syringomycin was amplified in all Pss strains. Based on pathogenicity tests on apricot twigs, strains were divided into two groups, one of higher and one of lower virulence. Partial sequences of the syrB gene and constructing a dendrogram using Bayesian inference showed genetic diversity among ten studied strains and divided them into two main groups.This grouping was similar to strains’ grouping based on partial sequences of the rpoD gene.

کلیدواژه‌ها [English]

  • East Azerbaijan
  • bacterial canker
  • Diversity
  • rpoD gene
  • syrB gene
 

Abbasi V. Rahimian H. and Tajick-Ghanbari M. A. 2013. Genetic variability of Iranian strains of Pseudomonas syringae pv. syringae causing bacterial canker disease of stone fruits. European Journal of Plant Pathology 135: 225–235.

Agrios G. N. 2005. Plant pathology. Fifth edition, Elsevier Academic Press, London, UK, 948 pp.

Ahmadi K. Gholizadeh H. Ebadzadeh H. Hatami F. Hoseinpoor R. Kazemifar R. and Abdshah H. 2016. Agricultural statistics in 2015. Ministry of Agriculture, Department of Planning and Economy, Center for Information and Communication Technology, Tehran, Iran. 3, 240.

Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716 – 723.

Aldaghi M. Rahimian H. and Mohammadi M. 2010. Comparison of phenotypic, serological and molecular characteristics of Pseudomonas syringae pv. syringae strains,  the  causal  agent  of  bacterial canker of stone fruits and blight of cereals. Iranian Journal of Plant Pathology 45:91-93 (In Persian with English summary).

Al-e-Yasine S. K. and Banihashemi Z. 1993. Bacterial Canker of Stone Fruit in Fars province. Proceeding of the 11th Iranian Plant Protection Congress. Rasht, Iran: 216.

Arrebola, E. 2004. Caracterización de una nueva toxina producida por Pseudomonas syringae pv. syringae: mangotoxina. Biosintesis y papel en la patogénesis. Ph.D. thesis. University of Málaga, Málaga, Spain.

Baca S. Canfield M. L. and Moore L. W. 1987. Variability in ice nucleation strains of Pseudomonas syringae isolated from diseased woody plants in Pacific Northwest nurseries. Plant disease 71:412-415.

Bahar M. Mojtahedi H. and Akhyani A. 1982. Bacterial canker of apricot trees in Esfahan. Iranian Journal of Plant Pathology 18:58-67.

Barzic M. R. and Guittet E. 1996. Structure and activity of persicomycins, toxins produced by Pseudomonas syringae pv. persicae, Prunus persica isolate. European Journal of Biochemistry 239: 702-709.

Bender C. L. Chaidez A. and Gross D. C. 1999. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiology and Molecular Biology Reviews 63:266–292.

Bradbury J. F. 1986. Pseudomonas syringae pv. syringae. In: Guide to Plant Pathogenic Bacteria. Kew, England: CAB International Mycological Institute, 175–177.

Berge O. Monteil C. L. Bartoli C. Chandeysson C. Guilbaud C. Sands D. C. Morris C. E. 2014. A user’s guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One. 9: e105547.

Bull C. T. Clarke C. R. Cai R. Vinatzer A. B. Jardini T. M. and Koike S. T. 2011. Multilocus sequence typing of Pseudomonas syringae Sensu Lato confirms previously described genomospecies and permits rapid identification of P. syringae pv. coriandricola and P. syringae pv. apii causing bacterial leaf spot on parsley. Phytophatology 10:847-858.

Bultreys A. and Gheysen I. 1999. Biological and molecular detection of toxic Lipodepsipeptide-producing Pseudomonas syringae strains and PCR identification in plants. Applied and Environmental Microbiology 65:1904–1909.

Carrión V. J. van der Voort M. Arrebola E. Gutiérrez-Barranquero G. A. de Vicente A. Raaijmakers J. M. and Cazorla F. M. 2014. Mangotoxin production of Pseudomonas syringae pv. syringae is regulated by MgoA. BMC Microbiology 14:46.

Cazorla F. M. Arrebola E. Del Moral E. Rivera E. Olea F. Perez-Garcia A. and De Vicente A. 2003. An antimetabolite toxin (mangotoxin) is produced by Pseudomonas syringae pv. syringae isolated from mango. Pages 175-183 in: Pseudomonas syringae and Related Pathogens. N. S. Iacobellis, A. Collmer, S. W. Hutcheson, C. E. Morris, J. Murillo, N. W. Schaad, D. E. Stead, G. Surico, and M. S. Ullrich, eds. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Dariush S. Ebadi A. A. Khoshkdaman M. Rabiei B. and Elahinia A. 2012: Characterising the genetic diversity ofPseudomonas syringae pv. syringae isolated from rice and wheat in Iran. Plant Protection Science 48:162–169.

De Bruijn, F. J. Rademarker J. Schneider M. Rossbach U. and Louws F. J. 1996. Rep-PCR genomic fingerprinting of plant-associated bacteria and computer-assisted phylogenetic analysis. Pp. 497-502. In: Grey S. Beth M. and Peter M. G (Eds.), Biology of Plant-Microbe Interaction. V. 1, APS Press, USA.

Doyle J. J. and Doyle J. L. 1990. Isolation of plant DNA from fresh tissue Focus 12:13–15.

Edgar R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.

Endert E. and Ritchie D. F. 1984. Detection of pathogenicity, measurment of virulence and determination of strain variation in Pseudomonas syringae pv. syringae. Plant Disease 68:677-680.

Fahy P. C. and Parsley G. J .1983. Plant Bacterial Diseases: A Diagnostic Guide. Academic Press. Sydney, Australia. 393.

Ferrante P. and Scortichini M. 2010. Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathology 59:954–962.

Fujita M. Hanaura Y. and Amemura A. 1995. Analysis of the rpoD gene encoding the principal sigma factor of Pseudomonas putida. Gene 167:93–98.

Gardan L. Shafik H. Belouin S. Broch R. Grimont F. and Grimont P. A. D. 1999. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. International Journal of Systematic Bacteriology 49:469-478.

Ghasemi A. Mohammadi M. Rahimian H. Sharifi Tehrani A. and Zakiee Z. 1998. Study of bacterial canker agent of stone fruit in Karaj. Proceeding of the 13th Iranian Plant Protection Congress, Karaj, Iran: 251.

Grgurina I. Gross D. C. Iacobellis N. S. Lavermicocca P. J. Takemoto Y. and Benincasa M. 1996. Phytotoxin production by Pseudomonas syringae pv. syringae: syringopeptin production by syr mutants defective in biosynthesis or secretion of syringomycin. FEMS Microbiology Letters 138:35–39.

Gross D. C. and DeVay J. E. 1977a. Population dynamics and pathogenesis of Pseudomonas syringae in maize and cowpea in relation to the in vitro production of syringomycin. Phytopathology 67:475-483.

Gross D. C. and DeVay J. E. 1977b. Production and purification of syringomycin, a phytotoxin produced by Pseudomonas syringae. Physiological Plant Pathology 11:12-28.

Gross D. C. Cody Y. S. Proebsting E. L. Radamaker G. K. and Spotts R. R. 1984. Ecotypes and pathogenicity of ice-nucleation-active Pseudomonas syringae isolated from deciduous fruit tree orchards. Phytopathology 74:241-248.

Guenzi E. Galli G. Grgurina I. Gross D. C. and Grandi G. 1998. Characterization of the syringomycin synthetase gene cluster-a link between prokaryotic and eukaryotic peptide synthetases. Journal of Biological Chemistry 273:32857-63.

Guenzi E. Galli G. Grgurina I. Gross D. C. and Grandi G. 1998. Characterization of the syringomycin synthetase gene cluster—a link between prokaryotic and eukaryotic peptide synthetases, Journal of Biological Chemistry 273:32857– 32863.

Gutiérrez-Barranquero J. A. Carrión V. J. Murillo J. Arrebola E. Arnold D. L. Cazorla F. M. and de Vicente A. 2013. A Pseudomonas syringae diversity survey reveals a differentiated phylotype of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology. 103:1115-29.

Hattingh M. J. and Roos I. M. M. 1995. Bacterial Canker. Compendium of stone fruit diseases, by Ogawa J. M. and Zehr E. I. APS Press. 48-50.

Hutchison M. L. and Gross D. C. 1997. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin, Molecular Plant-Microbe Interactions 10:347–354.

Hwang M. S. H. Morgan R. L. Sarkar S. F. Wang P. W. and Guttman D. S. 2005. Phylogenetic characterization of virulence and resistance phenotypes of Pseudomonas syringae. Applied and Environmental Microbiology 71:5182–5191.

Ichinose Y. Taguchi F. and Mukaihara T. 2013. Pathogenicity and virulence factors of Pseudomonas syringae. Journal of General Plant Pathology 79:285–296.

Jones A. L. 1971. Bacterial canker of sweet cherry in Michigan. Plant Disease Report 55:961-965.

Jones J. B. Chase A. R. and Harris G. K.1993. Evaluation of the Biology GN Microplate system for identification of some plant-pathogenic bacteria. Plant Disease 77:553–558.

Kaluzna M. Ferrante P. Sobiczewiski P. and Scortichini M. 2010. Characterization and genetic diversity of Pseudomonas syringae from stone fruits and hazelnut using repetitive-PCR and MLST. Journal of Plant Pathology 92:781–787.

Kaluzna M. Janse J. D. and Young J. M. 2012. Detection and identification methods and new tests as used and developed in the framework of COST 873 for bacteria pathogenic to stone fruits and nuts Pseudomonas syringae pathovars. Journal of Plant Pathology 94: S1.117-S1.126.

Klement Z. Frakes G. L. and Loverkovich L. 1964. Hypersensitive reaction induced by phytopathogenic bacteria in the tobacco leaf. Phytopathology 54:74-477.

Latorre B. A. and Jones A. L. 1979. Pseudomonas morsprunorum, the cause of bacterial canker of sour cherry in Michigan, and its epiphytic association with P. syringae. Phytopathology 69: 335-339.

Legard D. E. Aquadro C. F. and Hunter J. E. 1993. DNA sequence variation and phylogenetic relationships among strains of Pseudomonas syringae pv. syringae inferred from restriction site maps and restriction fragment length polymorphism. Applied and Environmental Microbiology 59:4180–4188.

Lelliott R. A. and Stead D. E. 1987. Methods for the diagnosis of bacterial diseases of plants. In: Preece TF, ed. Methods in Plant Pathology. London, UK: Blackwell Scientific Press. 2, 216.

Lelliott R. A. Billing E. and Hayward A. C. 1966. A determinative scheme for the fluorescent plant pathogenic pseudomonads. Journal of Applied Bacteriology 29:470-489.

Lonetto M. Gribskov M. and Gross C. A. 1992. The sigma 70 family: sequence conservation and evolutionary relationships. Journal of Bacteriology 174:3843-3849.

Mahmoudi H. Rahnama K. Rahimian H. Nasrolahnejad S. and Taghinasab M. 2011. Investigation on casual and associated agents with bacterial canker stone fruit trees in Golestan province. Journal of Plant Production 18:73-80.

Martín-Sanz A. de la Vega M. P. Murillo J. and Caminero C. 2013. Strains of Pseudomonas syringae pv. syringae from pea are phylogenetically and pathogenically diverse. Phytopathology 103:673-81.

Menard M. Sutra L. Luisetti J. Prunier J. P. and Gardan L. 2003. Pseudomonas syringae pv. avii (pv. nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France. European Journal of Plant Pathology 109:565-576.

Misas-Villamil J. C. Kolodziejek I. Crabill E. Kaschani F. Niessen S. Shindo T. Kaiser M. Alfano J. R. and van der Hoorn R. 2013. Pseudomonas syringae pv. syringae Uses proteasome inhibitor syringolin a to colonize from wound infection sites. PLOS Pathogens 9:e1003281.

Mohammadi M. Ghasemi A. and Rahimian H. 2001. Phenotypic characterization of Iranian strains of Pseudomonas syringae pv. syringae van Hall, the causal agent of bacterial canker disease of stone fruit trees. Journal of Agricultural Science and Technology 3: 51-65.

Mosivand M. Rahimian H. and Shams-Bakhsh M. 2009. Phenotypic and genotypic relatedness among Pseudomonas syringae pv. syringae strains isolates from sugarcane, stone fruit and wheat. Iranian Journal of Plant Pathology 45:75-85.

Mulet M. Lalucat J. and García-Valdés E. 2010. DNA sequence-based analysis of the Pseudomonas species. Environmental Microbiology 12:1513–1530.

Najafi Pour G. and Taghavi S. M. 2011. Comparison of Pseudomonas syringae pv. syringae from Different Hosts Based on Pathogenicity and BOX-PCR in Iran. Journal of Agricultural Science and Technology 13:431-442.

Natalini E. Rossi M. P. Barionovi D. and Scortichini M. 2006. Genetic and pathogenic diversity of Pseudomonas syringae pv. syringae isolates associated with bud necrosis and leaf spot of pear in a single orchard. Journal of plant pathology 88:219-223.

Nowell R. Laue B. Sharp P. M. and Green S. 2016. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. Molecular plant pathology 17:1409-1424.

Nylander J. A. A. 2004. MrModeltest v2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.

Otta J. D. and English H. 1971. Serology and pathology of Pseudomonas syringae. Phytopathology 61:443-452.

Palleroni N. J. 1984. Genus I. Pseudomonas (Migula 1984), Pp. 141-199. In. Holt J. G. and Kreig N. R. (Eds.), Bergey٫ s Manual of Systematic Bacteriology. The Williams and Wilkiins, Co., Baltimore.

Parkinson N. Bryant R. Bew J. and Elphinstone J. 2011. Rapid phylogenetic identification of members of the Pseudomonas syringae species complex using the rpoD locus. Plant Pathology 60:338–344.

Quigley N. and Gross D. C. 1994. Syringomycin production among strains of Pseudomonas syringae pv. syringae: conservation of the syrB and syrD genes and activation of phytotoxin production by plant signal molecules. Molecular Plant-Microbe Interactions 7:78-90.

Rannala B. and Yang Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43:304–311.

Ravindran A. Jalan N. Yuan J. S. Wang N. and Gross D. C. 2015. Comparative genomics of Pseudomonas syringae pv. syringae strains B301D and HS191 and insights into intrapathovar traits associated with plant pathogenesis. Microbiologyopen 4:553–573.  

Ronquist F. Teslenko M. van der Mark P. Ayres D. L. Darling A. Höhna S. Larget B. Liu L. Suchard M. A. and Huelsenbeck J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539–542.

Sănchez D. Matthijs S. Gomila M. Tricot C. Mulet M. Garcia-Valdés E. and Lalucata J. 2014. rpoD gene Pyrosequencing for the assessment of Pseudomonas diversity in a water sample from the Woluwe river. Applied and Environmental Microbiology 80:4738–4744.

Sands D. C. Schoth M. N. and Hildebrand D. C. 1970. Taxonomy of phytopathogenic Pseudomonas. Journal of Bacteriology 101:9-23.

Sarkar S. F. and Guttman D. S. 2004. The evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Applied and Environmental Microbiology 70:1999–2012.

Schaad N. W. Jones J. B. and Chun W. 2001 .Laboratory Guide for Identification of Plant Pathogenic Bacteria .Third Edition .American Phytopathology Society .St .Paul, Minnesota, USA. 373.

Schellenberg B. Ramel C. and Dudler R. 2010. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. Molecular Plant-Microbe Interactions 23:1287–1293.

Sinden S. L. DeVay J. E. and Backman P. A. 1971. Properties of syringomycin, a wide spectrum antibiotic and phytotoxin production by Pseudomonas syringae, and its role in bacterial canker disease of peach trees. Physiological Plant Pathology 1:199-214.

Słomnicka R. Olczak-Woltman H. Bartoszewski G. and Niemirowicz-Szczytt K. 2015. Genetic and pathogenic diversity of Pseudomonas syringae strains isolated from cucurbits. European Journal of Plant Pathology 141:1–14.

Sorensen K. N. Kim K. H. and Takemoto J. Y. 1998. PCR detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Applied and Environmental Microbiology 64:226–230.

Tamura K. Stecher G. Peterson D. Filipski A. and Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30:2725–2729.

Wang N. Lu S. E. Yang Q. Sze S. H. and Gross D. C. 2006. Identification of the syr-syp box in the promoter regions of genes dedicated to syringomycin and syringopeptin production by Pseudomonas syringae pv. syringae B301D. Journal of Bacteriology 188:160-168.

Xu G. W. and Gross D. C. 1988. Evaluation of the role of syringomycin in plant pathogenesis by using Tn5 mutants of Pseudomonas syringae pv. syringae defective in syringomycin production. Applied and Environmental Microbiology 54:1345–1353.

Yamamoto S. Ksai H. Arnold D. L. Jackson R. W. Vivian A. and Harayama S. 2000. Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394.

Young J. M. 1991. Pathogenicity and identification of the lilac pathogen, Pseudomonas syringae pv. syringae van Hall 1902. Annals of Applied Biology Journal 118:283–298.

Young J. M. 2010. Taxonomy of Pseudomonas syringae. Journal of Plant Pathology92, S1.5–S1.14.

Zhang J. H. Quigley N. B. and Gross D. C. 1995. Analysis of the syrB and syrC genes of Pseudomonas syringae pv. syringae indicates that syringomycin is synthesized by a thiotemplate mechanism. Journal of Bacteriology 177:4009–4020.

Zhang J. H. Quigley N. B. and Gross D. C. 1997. Analysis of the syrP gene, which regulates syringomycin synthesis by Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology 63:2771–2778.